Skip to main content
Log in

Predictive Numerical Simulations of Double Branch Stent-Graft Deployment in an Aortic Arch Aneurysm

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Total endovascular repair of the aortic arch represents a promising option for patients ineligible to open surgery. Custom-made design of stent-grafts (SG), such as the Terumo Aortic® RelayBranch device (DB), requires complex preoperative measures. Accurate SG deployment is required to avoid intraoperative or postoperative complications, which is extremely challenging in the aortic arch. In that context, our aim is to develop a computational tool able to predict SG deployment in such highly complex situations. A patient-specific case is performed with complete deployment of the DB and its bridging stents in an aneurysmal aortic arch. Deviations of our simulation predictions from actual stent positions are estimated based on post-operative scan and a sensitivity analysis is performed to assess the effects of material parameters. Results show a very good agreement between simulations and post-operative scan, with especially a torsion effect, which is successfully reproduced by our simulation. Relative diameter, transverse and longitudinal deviations are of 3.2 ± 4.0%, 2.6 ± 2.9 mm and 5.2 ± 3.5 mm respectively. Our numerical simulations show their ability to successfully predict the DB deployment in complex anatomy. The results emphasize the potential of computational simulations to assist practitioners in planning and performing complex and secure interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BS:

Bridging stents

CT:

Computed tomography

DB:

Terumo Aortic® (formerly Bolton Medical®) RelayBranch device

FEA:

Finite-element analysis

SG:

Stent-graft

TEVAR:

Thoracic Endovascular Aneurysm Repair

VMTK:

Vascular Modeling Toolkit

References

  1. Ambler, G., et al. Early results of fenestrated endovascular repair of juxtarenal aortic aneurysms in the United Kingdom. Circulation 125(22):2707–2715, 2012.

    Article  Google Scholar 

  2. Auricchio, F., A. Constantinescu, M. Conti, and G. Scalet. Fatigue of metallic stents: from clinical evidence to computational analysis. Ann. Biomed. Eng. 44:287–301, 2016.

    Article  CAS  PubMed  Google Scholar 

  3. Auricchio, F., M. Conti, S. Marconi, A. Reali, J. L. Tolenaar, and S. Trimarchi. Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput. Biol. Med. 43:386–394, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Chiu, T. L., A. Y. S. Tang, S. W. K. Cheng, and K. W. Chow. Analysis of flow patterns on branched endografts for aortic arch aneurysms. Inform. Med. Unlocked 13:62–70, 2018.

    Article  Google Scholar 

  5. Czerny, M., B. Rylski, J. Morlock, H. Schröfel, F. Beyersdorf, B. Saint Lebes, O. Meyrignac, F. Mokrane, M. Lescan, C. Schlensak, C. Hazenberg, T. Bloemert-Tuin, S. Braithwaite, J. van Herwaarden, and H. Rousseau. Orthotopic branched endovascular aortic arch repair in patients who cannot undergo classical surgery. Eur. J. Cardio-Thorac. Surg. 53(5):1007–1012, 2018.

    Article  Google Scholar 

  6. de Beaufort, H. W. L., F. J. H. Nauta, M. Conti, E. Cellitti, C. Trentin, E. Faggiano, G. H. W. van Bogerijen, C. A. Figueroa, F. L. Moll, J. A. van Herwaarden, F. Auricchio, and S. Trimarchi. Extensibility and distensibility of the thoracic aorta in patients with aneurysm. Eur. J. Vasc. Endovasc. Surg. 53:199–205, 2017.

    Article  PubMed  Google Scholar 

  7. De Bock, S., F. Iannaccone, M. De Beule, D. Van Loo, F. Vermassen, B. Verhegghe, and P. Segers. Filling the void: a coalescent numerical and experimental technique to determine aortic stent graft mechanics. J. Biomech. 46:2477–2482, 2013.

    Article  PubMed  Google Scholar 

  8. De Bock, S., F. Iannaccone, M. De Beule, F. Vermassen, P. Segers, and B. Verhegghe. What if you stretch the IFU? A mechanical insight into stent graft instructions for use in angulated proximal aneurysm necks. Med. Eng. Phys. 36:1567–1576, 2014.

    Article  PubMed  Google Scholar 

  9. De Bock, S., F. Iannaccone, G. De Santis, M. De Beule, D. Van Loo, D. Devos, F. Vermassen, P. Segers, and B. Verhegghe. Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J. Mech. Behav. Biomed. Mater. 13:129–139, 2012.

    Article  PubMed  Google Scholar 

  10. Demanget, N., S. Avril, P. Badel, L. Orgéas, C. Geindreau, J.-N. Albertini, and J.-P. Favre. Computational comparison of the bending behavior of aortic stent-grafts. J. Mech. Behav. Biomed. Mater. 5:272–282, 2012.

    Article  PubMed  Google Scholar 

  11. Doyle, M. G., S. A. Crawford, E. Osman, N. Eisenberg, L. W. Tse, C. H. Amon, and T. L. Forbes. Analysis of iliac artery geometric properties in fenestrated aortic stent graft rotation. Vasc. Endovasc. Surg. 52:188–194, 2018.

    Article  Google Scholar 

  12. Duprey, A., O. Trabelsi, M. Vola, J.-P. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 42:273–285, 2016.

    Article  PubMed  Google Scholar 

  13. Ferrer, C., C. Coscarella, and P. Cao. Endovascular repair of aortic arch disease with double inner branched thoracic stent graft: the Bolton perspective. J. Cardiovasc. Surg. (Torino) 59:547–553, 2018.

    Google Scholar 

  14. Figueroa, C. A., C. A. Taylor, A. J. Chiou, V. Yeh, and C. K. Zarins. Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J. Endovasc. Ther. 16:350–358, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gindre, J., A. Bel-Brunon, A. Kaladji, A. Duménil, M. Rochette, A. Lucas, P. Haigron, and A. Combescure. Finite element simulation of the insertion of guidewires during an EVAR procedure: example of a complex patient case, a first step toward patient-specific parameterized models. Int. J. Numer. Methods Biomed. Eng. 31:e02716, 2015.

    Article  Google Scholar 

  16. Haulon, S., R. K. Greenberg, R. Spear, M. Eagleton, C. Abraham, C. Lioupis, E. Verhoeven, K. Ivancev, T. Kölbel, B. Stanley, T. Resch, P. Desgranges, B. Maurel, B. Roeder, T. Chuter, and T. Mastracci. Global experience with an inner branched arch endograft. J. Thorac. Cardiovasc. Surg. 148:1709–1716, 2014.

    Article  PubMed  Google Scholar 

  17. Hemmler, A., B. Lutz, C. Reeps, G. Kalender, and M. W. Gee. A methodology for in silico endovascular repair of abdominal aortic aneurysms. Biomech. Model. Mechanobiol. 17:1139–1164, 2018.

    Article  PubMed  Google Scholar 

  18. Ishimaru, S. Endografting of the aortic arch. J. Endovasc. Ther. 11:II66–II71, 2004.

    Article  Google Scholar 

  19. Kleinstreuer, C., Z. Li, C. A. Basciano, S. Seelecke, and M. A. Farber. Computational mechanics of Nitinol stent grafts. J. Biomech. 41:2370–2378, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Malkawi, A. H., R. J. Hinchliffe, M. Yates, P. J. Holt, I. M. Loftus, and M. M. Thompson. Morphology of aortic arch pathology: implications for endovascular repair. J. Endovasc. Ther. 17:474–479, 2010.

    Article  PubMed  Google Scholar 

  21. Marrocco-Trischitta, M. M., T. M. van Bakel, R. M. Romarowski, H. W. de Beaufort, M. Conti, J. A. van Herwaarden, F. L. Moll, F. Auricchio, and S. Trimarchi. The modified arch landing areas nomenclature (MALAN) improves prediction of stent graft displacement forces: proof of concept by computational fluid dynamics modelling. Eur. J. Vasc. Endovasc. Surg. 55:584–592, 2018.

    Article  PubMed  Google Scholar 

  22. Marzelle, J., E. Presles, J. P. Becquemin, and WINDOWS trial participants. Results and factors affecting early outcome of fenestrated and/or branched stent grafts for aortic aneurysms: a multicenter prospective study. Ann. Surg. 261:197–206, 2015.

    Article  CAS  PubMed  Google Scholar 

  23. Mastracci, T. M., M. J. Eagleton, Y. Kuramochi, S. Bathurst, and K. Wolski. Twelve-year results of fenestrated endografts for juxtarenal and group IV thoracoabdominal aneurysms. J. Vasc. Surg. 61:355–364, 2015.

    Article  PubMed  Google Scholar 

  24. Maurel, B., T. M. Mastracci, R. Spear, A. Hertault, R. Azzaoui, J. Sobocinski, and S. Haulon. Branched and fenestrated options to treat aortic arch aneurysms. J. Cardiovasc. Surg. (Torino) 57:686–697, 2016.

    Google Scholar 

  25. Maurel, B., J. Sobocinski, R. Spear, R. Azzaoui, M. Koussa, A. Prat, M. R. Tyrrell, A. Hertault, and S. Haulon. Current and future perspectives in the repair of aneurysms involving the aortic arch. J. Cardiovasc. Surg. (Torino) 56:197–215, 2015.

    CAS  Google Scholar 

  26. Molony, D. S., E. G. Kavanagh, P. Madhavan, M. T. Walsh, and T. M. McGloughlin. A computational study of the magnitude and direction of migration forces in patient-specific abdominal aortic aneurysm stent-grafts. Eur. J. Vasc. Endovasc. Surg. 40:332–339, 2010.

    Article  CAS  PubMed  Google Scholar 

  27. Natsis, K. I., I. A. Tsitouridis, M. V. Didagelos, A. A. Fillipidis, K. G. Vlasis, and P. D. Tsikaras. Anatomical variations in the branches of the human aortic arch in 633 angiographies: clinical significance and literature review. Surg. Radiol. Anat. SRA 31:319–323, 2009.

    Article  PubMed  Google Scholar 

  28. Nauta, F. J., S. Trimarchi, A. V. Kamman, F. L. Moll, J. A. van Herwaarden, H. J. Patel, C. A. Figueroa, K. A. Eagle, and J. B. Froehlich. Update in the management of type B aortic dissection. Vasc. Med. Lond. Engl. 21:251–263, 2016.

    Article  Google Scholar 

  29. Nienaber, C. A., S. Kische, H. Rousseau, H. Eggebrecht, T. C. Rehders, G. Kundt, A. Glass, D. Scheinert, M. Czerny, T. Kleinfeldt, B. Zipfel, L. Labrousse, R. Fattori, H. Ince, and INSTEAD-XL trial. Endovascular repair of type B aortic dissection: long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ. Cardiovasc. Interv. 6:407–416, 2013.

    Article  CAS  PubMed  Google Scholar 

  30. Perrin, D., P. Badel, L. Orgeas, C. Geindreau, S. R. du Roscoat, J.-N. Albertini, and S. Avril. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. J. Mech. Behav. Biomed. Mater. 63:86–99, 2016.

    Article  PubMed  Google Scholar 

  31. Perrin, D., P. Badel, L. Orgéas, C. Geindreau, A. Dumenil, J.-N. Albertini, and S. Avril. Patient-specific numerical simulation of stent-graft deployment: validation on three clinical cases. J. Biomech. 48:1868–1875, 2015.

    Article  PubMed  Google Scholar 

  32. Perrin, D., N. Demanget, P. Badel, S. Avril, L. Orgéas, C. Geindreau, and J.-N. Albertini. Deployment of stent grafts in curved aneurysmal arteries: toward a predictive numerical tool. Int. J. Numer. Methods Biomed. Eng. 31:e02698, 2015.

    Article  Google Scholar 

  33. Reymond, P., P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med. Eng. Phys. 35:784–791, 2013.

    Article  PubMed  Google Scholar 

  34. Riambau, V. Application of the bolton relay device for thoracic endografting in or near the aortic arch. Aorta 3:16–24, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Romarowski, R. M., M. Conti, S. Morganti, V. Grassi, M. M. Marrocco-Trischitta, S. Trimarchi, and F. Auricchio. Computational simulation of TEVAR in the ascending aorta for optimal endograft selection: a patient-specific case study. Comput. Biol. Med. 103:140–147, 2018.

    Article  CAS  PubMed  Google Scholar 

  36. Romarowski, R. M., E. Faggiano, M. Conti, A. Reali, S. Morganti, and F. Auricchio. A novel computational framework to predict patient-specific hemodynamics after TEVAR: integration of structural and fluid-dynamics analysis by image elaboration. Comput. Fluids 2018. https://doi.org/10.1016/j.compfluid.2018.06.002.

    Article  Google Scholar 

  37. Sanford, R. M., S. A. Crawford, H. Genis, M. G. Doyle, T. L. Forbes, and C. H. Amon. Predicting rotation in fenestrated endovascular aneurysm repair using finite element analysis. J. Biomech. Eng. 2018. https://doi.org/10.1115/1.4040124.

    Article  PubMed  Google Scholar 

  38. Spear, R., A. Hertault, K. Van Calster, N. Settembre, M. Delloye, R. Azzaoui, J. Sobocinski, D. Fabre, M. Tyrrell, and S. Haulon. Complex endovascular repair of postdissection arch and thoracoabdominal aneurysms. J. Vasc. Surg. 67(3):685–693, 2017.

    Article  PubMed  Google Scholar 

  39. Tian, D. H., B. Wan, M. Di Eusanio, D. Black, and T. D. Yan. A systematic review and meta-analysis on the safety and efficacy of the frozen elephant trunk technique in aortic arch surgery. Ann. Cardiothorac. Surg. 2:581–591, 2013.

    PubMed  PubMed Central  Google Scholar 

  40. Ullery, B. W., G.-Y. Suh, K. Hirotsu, D. Zhu, J. T. Lee, M. D. Dake, D. Fleischmann, and C. P. Cheng. Geometric deformations of the thoracic aorta and supra-aortic arch branch vessels following thoracic endovascular aortic repair. Vasc. Endovasc. Surg. 52:173–180, 2018.

    Article  Google Scholar 

  41. Vad, S., A. Eskinazi, T. Corbett, T. McGloughlin, and J. P. Vande Geest. Determination of coefficient of friction for self-expanding stent-grafts. J. Biomech. Eng. 132:121007, 2010.

    Article  PubMed  Google Scholar 

  42. van Bakel, T. M., C. J. Arthurs, J. A. van Herwaarden, F. L. Moll, K. A. Eagle, H. J. Patel, S. Trimarchi, and C. A. Figueroa. A computational analysis of different endograft designs for Zone 0 aortic arch repair. Eur. J. Cardio-Thorac. Surg. 54(2):389–396, 2018.

    Article  Google Scholar 

  43. van Bogerijen, G. H. W., J. L. Tolenaar, M. Conti, F. Auricchio, F. Secchi, F. Sardanelli, F. L. Moll, J. A. van Herwaarden, V. Rampoldi, and S. Trimarchi. Contemporary role of computational analysis in endovascular treatment for thoracic aortic disease. Aorta (Stamford, CN) 1:171–181, 2013.

    Article  Google Scholar 

  44. van Prehn, J., K. L. Vincken, B. E. Muhs, G. K. W. Barwegen, L. W. Bartels, M. Prokop, F. L. Moll, and H. J. M. Verhagen. Toward endografting of the ascending aorta: insight into dynamics using dynamic cine-CTA. J. Endovasc. Ther. 14:551–560, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Samuel Arbefeuille, Scott Rush and Christian Fletcher from Terumo Aortic® (formerly Bolton Medical®) for their help and support in this study. Funding was provided by Agence Régionale de Santé d’Ile de France (FR).

Conflict of interest

D. Perrin, J.-N. Albertini and S. Avril are cofounders of the company Predisurge SAS. The other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Derycke.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derycke, L., Perrin, D., Cochennec, F. et al. Predictive Numerical Simulations of Double Branch Stent-Graft Deployment in an Aortic Arch Aneurysm. Ann Biomed Eng 47, 1051–1062 (2019). https://doi.org/10.1007/s10439-019-02215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02215-2

Keywords

Navigation