Skip to main content

Advertisement

Log in

Iron toxicity in neurodegeneration

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is an essential element for life on earth, participating in a plethora of cellular processes where one-electron transfer reactions are required. Its essentiality, coupled to its scarcity in aqueous oxidative environments, has compelled living organisms to develop mechanisms that ensure an adequate iron supply, at times with disregard to long-term deleterious effects derived from iron accumulation. However, iron is an intrinsic producer of reactive oxygen species, and increased levels of iron promote neurotoxicity because of hydroxyl radical formation, which results in glutathione consumption, protein aggregation, lipid peroxidation and nucleic acid modification. Neurons from brain areas sensitive to degeneration accumulate iron with age and thus are subjected to an ever increasing oxidative stress with the accompanying cellular damage. The ability of these neurons to survive depends on the adaptive mechanisms developed to cope with the increasing oxidative load. Here, we describe the chemical and thermodynamic peculiarities of iron chemistry in living matter, review the components of iron homeostasis in neurons and elaborate on the mechanisms by which iron homeostasis is lost in Parkinson’s disease, Alzheimer’s disease and other diseases in which iron accumulation has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre P, Mena N, Tapia V, Arredondo M, Núñez MT (2005) Iron homeostasis in neuronal cells: a role for IREG1. BMC Neurosci 6:3

    Article  PubMed  CAS  Google Scholar 

  • Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12(2):222–228

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR (1997) MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 15(1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Bartzokis G, Sultzer D, Cummings J, Holt LE, Hance DB, Henderson VW, Mintz J (2000) In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry 57(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Beinert H, Emptage MH, Dreyer JL, Scott RA, Hahn JE, Hodgson KO, Thomson AJ (1983) Iron-sulfur stoichiometry and structure of iron-sulfur clusters in three-iron proteins: evidence for [3Fe–4S] clusters. Proc Natl Acad Sci USA 80(2):393–396

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17(1):5–17

    Article  PubMed  Google Scholar 

  • Boserup MW, Lichota J, Haile D, Moos T (2011) Heterogenous distribution of ferroportin-containing neurons in mouse brain. Biometals 24(2):357–375

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MWB (1997) Transport of Iron in the blood-brain-Ccrebrospinal fluid system. J Neurochem 69(2):443–454

    Article  PubMed  CAS  Google Scholar 

  • Brennan WA Jr, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44(6):1948–1950

    Article  PubMed  CAS  Google Scholar 

  • Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR (2001) Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res 66(6):1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Cairo G, Recalcati S (2007) Iron-regulatory proteins: molecular biology and pathophysiological implications. Expert Rev Mol Med 9(33):1–13

    Article  PubMed  Google Scholar 

  • Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, Zhu X (2007) Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 32(10):1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Chinopoulos C, Adam-Vizi V (2001) Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J Neurochem 76(1):302–306

    Article  PubMed  CAS  Google Scholar 

  • Chinta SJ, Andersen JK (2006) Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson’s disease. Free Radic Biol Med 41(9):1442–1448

    Article  PubMed  CAS  Google Scholar 

  • Collingwood JF, Mikhaylova A, Davidson M, Batich C, Streit WJ, Terry J, Dobson J (2005) In situ characterization and mapping of iron compounds in Alzheimer’s disease tissue. J Alzheimers Dis 7(4):267–272

    PubMed  CAS  Google Scholar 

  • Collingwood JF, Chong RK, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Perry G, Posfai M, Siedlak SL, Simpson ET, Smith MA, Dobson J (2008) Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. J Alzheimers Dis 14(2):235–245

    PubMed  CAS  Google Scholar 

  • Connor JR, Benkovic SA (1992) Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann Neurol 32(Suppl):S51–S61

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31(2):327–335

    Article  PubMed  CAS  Google Scholar 

  • Cozzi A, Santambrogio P, Corsi B, Campanella A, Arosio P, Levi S (2006) Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiol Dis 23(3):644–652

    Article  PubMed  CAS  Google Scholar 

  • Curtis AR, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, Coulthard A, Jackson MJ, Jackson AP, McHale DP, Hay D, Barker WA, Markham AF, Bates D, Curtis A, Burn J (2001) Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 28(4):350–354

    Article  PubMed  CAS  Google Scholar 

  • Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58(4):376–388

    Article  PubMed  CAS  Google Scholar 

  • Davison AN (1987) Pathophysiology of ageing brain. Gerontology 33(3–4):129–135

    Article  PubMed  CAS  Google Scholar 

  • De Domenico I, Vaughn MB, Li L, Bagley D, Musci G, Ward DM, Kaplan J (2006) Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 25(22):5396–5404

    Article  PubMed  CAS  Google Scholar 

  • Devalia V, Carter K, Walker AP, Perkins SJ, Worwood M, May A, Dooley JS (2002) Autosomal dominant reticuloendothelial iron overload associated with a 3-base pair deletion in the ferroportin 1 gene (SLC11A3). Blood 100(2):695–697

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975

    Article  PubMed  Google Scholar 

  • Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T, Chai WM, Zhang H, Zhan Y, Guan YJ (2009) Correlation of iron in the hippocampus with MMSE in patients with Alzheimer’s disease. J Magn Reson Imaging 29(4):793–798

    Article  PubMed  Google Scholar 

  • Double KL, Gerlach M, Schunemann V, Trautwein AX, Zecca L, Gallorini M, Youdim MB, Riederer P, Ben-Shachar D (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66(3):489–494

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267(16):4912–4916

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts C (2004) Looking for the link between plaques and tangles. Neurobiol Aging 25(6):735–739 (discussion 743–736)

    Google Scholar 

  • Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118(1):5–36

    Article  PubMed  CAS  Google Scholar 

  • Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik I (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem 248(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Falangola MF, Lee SP, Nixon RA, Duff K, Helpern JA (2005) Histological co-localization of iron in Abeta plaques of PS/APP transgenic mice. Neurochem Res 30(2):201–205

    Article  PubMed  CAS  Google Scholar 

  • Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC (2002) Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson’s disease. J Neurochem 83(2):320–330

    Article  PubMed  CAS  Google Scholar 

  • Fisher J, Devraj K, Ingram J, Slagle-Webb B, Madhankumar AB, Liu X, Klinger M, Simpson IA, Connor JR (2007) Ferritin: a novel mechanism for delivery of iron to the brain and other organs. Am J Physiol Cell Physiol 293(2):C641–C649

    Article  PubMed  CAS  Google Scholar 

  • Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD, Van der Schyf CJ (2007) Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res 32(10):1686–1693

    Article  PubMed  CAS  Google Scholar 

  • Garrick MD, Garrick LM (2009) Cellular iron transport. Biochim Biophys Acta 1790(5):309–325

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Double KL (2008) Neuromelanin-bound ferric iron as an experimental model of dopaminergic neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 14(Suppl 2):S185–S188

    Article  PubMed  Google Scholar 

  • Giampa C, DeMarch Z, Patassini S, Bernardi G, Fusco FR (2007) Immunohistochemical localization of TRPC6 in the rat substantia nigra. Neurosci Lett 424(3):170–174

    Article  PubMed  CAS  Google Scholar 

  • Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73(5):1413–1423

    Article  PubMed  CAS  Google Scholar 

  • Glickstein H, El RB, Link G, Breuer W, Konijn AM, Hershko C, Nick H, Cabantchik ZI (2006) Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood 108(9):3195–3203

    Article  PubMed  CAS  Google Scholar 

  • Gómez FJ, Aguirre P, Gonzalez-Billault C, Núñez MT (2011) Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm 118(3):421–431

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45(6):1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem 259(6):3620–3624

    PubMed  CAS  Google Scholar 

  • Griffiths PD, Dobson BR, Jones GR, Clarke DT (1999) Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122(Pt 4):667–673

    Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  PubMed  CAS  Google Scholar 

  • Haeger P, Alvarez A, Leal N, Adasme T, Núñez MT, Hidalgo C (2010) Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training. Neurotoxic Res 17(3):238–247

    Article  CAS  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203

    Article  PubMed  Google Scholar 

  • Hidalgo C, Núñez MT (2007) Calcium, iron and neuronal function. IUBMB Life 59(4–5):280–285

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56(2):446–451

    Article  PubMed  CAS  Google Scholar 

  • Hubert N, Hentze MW (2002) Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc Natl Acad Sci USA 99(19):12345–12350

    Article  PubMed  CAS  Google Scholar 

  • Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Wengenack TM, Reyes DA, Garwood M, Curran GL, Borowski BJ, Lin J, Preboske GM, Holasek SS, Adriany G, Poduslo JF (2005) In vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer’s transgenic mice. J Neurosci 25(43):10041–10048

    Article  PubMed  CAS  Google Scholar 

  • Jefferies WA, Food MR, Gabathuler R, Rothenberger S, Yamada T, Yasuhara O, McGeer PL (1996) Reactive microglia specifically associated with amyloid plaques in Alzheimer’s disease brain tissue express melanotransferrin. Brain Res 712(1):122–126

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14(2):115–140

    Article  PubMed  CAS  Google Scholar 

  • Johnstone M, Gearing AJ, Miller KM (1999) A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol 93(1–2):182–193

    Article  PubMed  CAS  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Casadesus G, Fisher D (2005) Oxidative stress and inflammation in brain aging: nutritional considerations. Neurochem Res 30(6–7):927–935

    Article  PubMed  CAS  Google Scholar 

  • Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med 33(8):1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Kastner A, Hirsch EC, Lejeune O, Javoy-Agid F, Rascol O, Agid Y (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J Neurochem 59(3):1080–1089

    Article  PubMed  CAS  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909

    Article  PubMed  CAS  Google Scholar 

  • Kaur D, Lee D, Ragapolan S, Andersen JK (2009) Glutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: implications for Parkinson’s disease. Free Radic Biol Med 46(5):593–598

    Article  PubMed  CAS  Google Scholar 

  • Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M (2003) Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood 102(12):4191–4197

    Article  PubMed  CAS  Google Scholar 

  • Krizaj D (2005) Compartmentalization of calcium entry pathways in mouse rods. Eur J Neurosci 22(12):3292–3296

    Article  PubMed  Google Scholar 

  • Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531(1–2):81–92

    PubMed  CAS  Google Scholar 

  • Kupershmidt L, Weinreb O, Amit T, Mandel S, Bar-Am O, Youdim MB (2011) Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience 189:345–358

    Article  PubMed  CAS  Google Scholar 

  • LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    Article  PubMed  CAS  Google Scholar 

  • Latunde-Dada GO, Xiang L, Simpson RJ, McKie AT (2011) Duodenal cytochrome b (Cybrd 1) and HIF-2alpha expression during acute hypoxic exposure in mice. Eur J Nutr 50(8):699–704

    Article  PubMed  CAS  Google Scholar 

  • Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176

    Article  PubMed  Google Scholar 

  • Lill R, Muhlenhoff U (2008) Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77:669–700

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Dutkiewicz R, Elsasser HP, Hausmann A, Netz DJ, Pierik AJ, Stehling O, Urzica E, Muhlenhoff U (2006) Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta 1763(7):652–667

    Article  PubMed  CAS  Google Scholar 

  • Lis A, Paradkar PN, Singleton S, Kuo HC, Garrick MD, Roth JA (2005) Hypoxia induces changes in expression of isoforms of the divalent metal transporter (DMT1) in rat pheochromocytoma (PC12) cells. Biochem Pharmacol 69(11):1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Theil EC (2005) Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38(3):167–175

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 102(19):6843–6848

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci USA 103(37):13612–13617

    Article  PubMed  CAS  Google Scholar 

  • Lockman JA, Geldenhuys WJ, Bohn KA, Desilva SF, Allen DD, Van der Schyf CJ (2012) Differential effect of nimodipine in attenuating iron-induced toxicity in brain- and blood-brain barrier-associated cell types. Neurochem Res 37(1):134–142

    Article  PubMed  CAS  Google Scholar 

  • Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA 96(20):11492–11495

    Article  PubMed  CAS  Google Scholar 

  • Ludwiczek S, Theurl I, Muckenthaler MU, Jakab M, Mair SM, Theurl M, Kiss J, Paulmichl M, Hentze MW, Ritter M, Weiss G (2007) Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nat Med 13(4):448–454

    Article  PubMed  CAS  Google Scholar 

  • Mancuso C, Scapagini G, Curro D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    Article  PubMed  CAS  Google Scholar 

  • Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19(1):33–36

    Article  PubMed  CAS  Google Scholar 

  • Martelli A, Wattenhofer-Donze M, Schmucker S, Bouvet S, Reutenauer L, Puccio H (2007) Frataxin is essential for extramitochondrial Fe–S cluster proteins in mammalian tissues. Hum Mol Genet 16(22):2651–2658

    Article  PubMed  CAS  Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2):299–309

    Article  PubMed  CAS  Google Scholar 

  • McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291(5509):1755–1759

    Article  PubMed  CAS  Google Scholar 

  • Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22(6):885–893

    Article  PubMed  CAS  Google Scholar 

  • Mehlhase J, Sandig G, Pantopoulos K, Grune T (2005) Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radic Biol Med 38(2):276–285

    Article  PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  • Mena NP, Bulteau AL, Salazar J, Hirsch EC, Núñez MT (2011) Effect of mitochondrial complex I inhibition on Fe–S cluster protein activity. Biochem Biophys Res Commun 409(2):241–246

    Article  PubMed  CAS  Google Scholar 

  • Moos T, Morgan EH (1998) Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res 54(4):486–494

    Article  PubMed  CAS  Google Scholar 

  • Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13(3):149–157

    Article  PubMed  Google Scholar 

  • Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH (2007) Iron trafficking inside the brain. J Neurochem 103(5):1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Mura C, Delgado R, Aguirre P, Bacigalupo J, Nuñez MT (2006) SHSY5Y neuroblastoma cells survival to iron challenge results in a quiescent and functional cell population. J Neurochem 98(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J 378(Pt 3):975–982

    Article  PubMed  CAS  Google Scholar 

  • Núñez MT, Gallardo V, Muñoz P, Tapia V, Esparza A, Salazar J, Speisky H (2004) Progressive iron accumulation induces a biphasic change in the glutathione content of neuroblastoma cells. Free Radic Biol Med 37(7):953–960

    Article  PubMed  CAS  Google Scholar 

  • Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37(11):1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108(4):1388–1394

    Article  PubMed  CAS  Google Scholar 

  • Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH (2006) Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berl) 84(5):349–364

    Article  CAS  Google Scholar 

  • Paradkar PN, Roth JA (2006) Post-translational and transcriptional regulation of DMT1 during P19 embryonic carcinoma cell differentiation by retinoic acid. Biochem J 394(Pt 1):173–183

    PubMed  CAS  Google Scholar 

  • Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44(6):1090–1096

    Article  PubMed  Google Scholar 

  • Pelizzoni I, Macco R, Morini MF, Zacchetti D, Grohovaz F, Codazzi F (2011) Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell 10(1):172–183

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33(3):305–310

    Article  PubMed  CAS  Google Scholar 

  • Perry G, Taddeo MA, Petersen RB, Castellani RJ, Harris PL, Siedlak SL, Cash AD, Liu Q, Nunomura A, Atwood CS, Smith MA (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16(1):77–81

    Article  PubMed  CAS  Google Scholar 

  • Qian ZM, Wu XM, Fan M, Yang L, Du F, Yung WH, Ke Y (2011) Divalent metal transporter 1 is a hypoxia-inducible gene. J Cell Physiol 226(6):1596–1603

    Article  PubMed  CAS  Google Scholar 

  • Quintana C, Bellefqih S, Laval JY, Guerquin-Kern JL, Wu TD, Avila J, Ferrer I, Arranz R, Patino C (2006) Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153(1):42–54

    Article  PubMed  CAS  Google Scholar 

  • Ramirez G, Rey S, von Bernhardi R (2008) Proinflammatory stimuli are needed for induction of microglial cell-mediated AbetaPP_{244-C} and Abeta-neurotoxicity in hippocampal cultures. J Alzheimers Dis 15(1):45–59

    PubMed  CAS  Google Scholar 

  • Reynolds MR, Berry RW, Binder LI (2007) Nitration in neurodegeneration: deciphering the “Hows” “nYs”. Biochemistry 46(25):7325–7336

    Article  PubMed  CAS  Google Scholar 

  • Rouault TA, Zhang DL, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24(4):673–684

    Article  PubMed  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Núñez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105(47):18578–18583

    Article  PubMed  CAS  Google Scholar 

  • Salgado JC, Olivera-Nappa A, Gerdtzen ZP, Tapia V, Theil EC, Conca C, Núñez MT (2010) Mathematical modeling of the dynamic storage of iron in ferritin. BMC Syst Biol 4:147

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Atwood CS, Smith MA (2000) The role of metals in neurodegenerative diseases. Cell Mol Biol (Noisy-le-grand) 46(4):731–741

    Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2006) Mitochondrial disease. Lancet 368(9529):70–82

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH, Gegg M (2011) Mitochondrial contribution to Parkinson’s disease pathogenesis. Parkinsons Dis 2011:159160

    PubMed  Google Scholar 

  • Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827

    Article  PubMed  CAS  Google Scholar 

  • Shachar DB, Kahana N, Kampel V, Warshawsky A, Youdim MB (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46(2):254–263

    Article  PubMed  CAS  Google Scholar 

  • Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440(7080):96–100

    Article  PubMed  CAS  Google Scholar 

  • Sheftel A, Stehling O, Lill R (2010) Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21(5):302–314

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Gibson GE (2007) Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 21(4):276–291

    Article  PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355

    Article  PubMed  CAS  Google Scholar 

  • Sienko MJ, Plane RA (1976) Chemistry, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Snyder AM, Connor JR (2009) Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta 1790(7):606–614

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74(3):199–205

    Article  PubMed  CAS  Google Scholar 

  • Song N, Wang J, Jiang H, Xie J (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radic Biol Med 48(2):332–341

    Article  PubMed  CAS  Google Scholar 

  • Spiro TG, Salman P (1974) Inorganic chemistry. In: Jacobs A, Worwood M (eds) Iron in biochemistry and medicine. Academic Press, New York, pp 1–28

    Google Scholar 

  • Symons MCR, Gutteridge JMC (1998) Free radicals and iron: chemistry, biology, and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55(2):155–164

    Article  PubMed  CAS  Google Scholar 

  • Todorich B, Zhang X, Connor JR (2011) H-ferritin is the major source of iron for oligodendrocytes. Glia 59(6):927–935

    Article  PubMed  Google Scholar 

  • Tulpule K, Robinson SR, Bishop GM, Dringen R (2010) Uptake of ferrous iron by cultured rat astrocytes. J Neurosci Res 88(3):563–571

    PubMed  CAS  Google Scholar 

  • Unciuleac M, Warkentin E, Page CC, Boll M, Ermler U (2004) Structure of a xanthine oxidase-related 4-hydroxybenzoyl-CoA reductase with an additional [4Fe–4S] cluster and an inverted electron flow. Structure 12(12):2249–2256

    PubMed  CAS  Google Scholar 

  • Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J, van den Heuvel M, Davies KE, Ponting CP (2003) Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta 1651(1–2):116–123

    PubMed  CAS  Google Scholar 

  • Vidal R, Delisle MB, Rascol O, Ghetti B (2003) Hereditary ferritinopathy. J Neurol Sci 207(1–2):110–111

    Article  PubMed  Google Scholar 

  • von Bernhardi R (2007) Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotoxic Res 12(4):215–232

    Article  Google Scholar 

  • Vymazal J, Righini A, Brooks RA, Canesi M, Mariani C, Leonardi M, Pezzoli G (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology 211(2):489–495

    PubMed  CAS  Google Scholar 

  • Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763(7):668–689

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Wang LH, Zhao Y, Lu YP, Zhu L (2010) Hypoxia regulates the ferrous iron uptake and reactive oxygen species level via divalent metal transporter 1 (DMT1) Exon1B by hypoxia-inducible factor-1. IUBMB Life 62(8):629–636

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O, Amit T, Mandel S, Youdim MB (2011) Novel therapeutic approach for neurodegenerative pathologies: multitarget iron-chelating drugs regulating hypoxia-inducible factor 1 signal transduction pathway. Neurodegener Dis. [Epub ahead of print]

  • Williams K, Wilson MA, Bressler J (2000) Regulation and developmental expression of the divalent metal-ion transporter in the rat brain. Cell Mol Biol (Noisy-le-grand) 46(3):563–571

    Google Scholar 

  • Wilson RB (2006) Iron dysregulation in Friedreich ataxia. Semin Pediatr Neurol 13(3):166–175

    Article  PubMed  Google Scholar 

  • Wood PM (1988) The potential diagram for oxygen at pH 7. Biochem J 253(1):287–289

    PubMed  CAS  Google Scholar 

  • Wright RO, Baccarelli A (2007) Metals and neurotoxicology. J Nutr 137(12):2809–2813

    PubMed  CAS  Google Scholar 

  • Yamada M (2004) Cerebral amyloid angiopathy and gene polymorphisms. J Neurol Sci 226(1–2):41–44

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Liu XB, Quinones M, Melby PC, Ghio A, Haile DJ (2002) Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation. J Biol Chem 277(42):39786–39791

    Article  PubMed  CAS  Google Scholar 

  • Yasha TC, Shankar L, Santosh V, Das S, Shankar SK (1997) Histopathological & immunohistochemical evaluation of ageing changes in normal human brain. Indian J Med Res 105:141–150

    PubMed  CAS  Google Scholar 

  • Ye H, Rouault TA (2010) Erythropoiesis and iron sulfur cluster biogenesis. Adv Hematol 2010

  • Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl 126:47–54

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Stephenson G, Ben-Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D, Ito S, Fariello R, Gallorini M (2002) The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm 109(5–6):663–672

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Zucca FA, Wilms H, Sulzer D (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26(11):578–580

    Article  PubMed  CAS  Google Scholar 

  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265(27):16330–16336

    PubMed  CAS  Google Scholar 

  • Zheng H, Youdim MB, Fridkin M (2010) Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy. ACS Chem Biol 5(6):603–610

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H, Jankovic J, Youdim MB, Le W (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21(14):3835–3844

    Article  PubMed  CAS  Google Scholar 

  • Zoccarato F, Toscano P, Alexandre A (2005) Dopamine-derived dopaminochrome promotes H(2)O(2) release at mitochondrial complex I: stimulation by rotenone, control by Ca(2+), and relevance to Parkinson disease. J Biol Chem 280(16):15587–15594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by grant 1100599 from Fondo Nacional de Ciencia y Tecnología Chile, (FONDECYT) and by project ICM-P05-001-F from the Millennium Scientific Initiative, Ministerio de Economía, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco T. Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez, M.T., Urrutia, P., Mena, N. et al. Iron toxicity in neurodegeneration. Biometals 25, 761–776 (2012). https://doi.org/10.1007/s10534-012-9523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9523-0

Keywords

Navigation