Skip to main content

Advertisement

Log in

The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment

  • Clinical-Patient Studies
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objective To explore prospectively the positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET)–PET in selected patients with a magnetic resonance imaging (MRI)-based suspicion of a glioma recurrence or progression. Methods Patients with a supratentorial glioma (initial World Health Organization (WHO) grade II, III or IV) were considered eligible if they had both an MRI-(new/progressive contrast-enhancing lesion) and FET–PET-based diagnosis of a recurrence/progression after various forms and combinations of irradiation and chemotherapy. Criterion for tumour recurrence/progression in FET–PET was a standardized uptake value (SUVmax)/Background (BG) ratio of >2.0 in the late uptake phase. All patients underwent multimodal (MRI, FET–PET) imaging-guided stereotactic biopsy. The positive predictive value was defined as the proportion of MRI and FET–PET findings indicating glioma recurrence/progression that also tested positive for tumour recurrence/progression after stereotactic biopsy. Results Thirty-one patients with initially WHO grade II (17), WHO grade III (6), and grade IV glioma (8) were included. In 26 patients FET–PET results indicating tumour recurrence/progression were concordant with the biopsy results. In five patients histopathologic evaluation failed to reveal a “vital” tumour. FET–PET findings were also discordant with the radiographic and clinical follow-up in these five patients. The positive predictive value of FET–PET was 84%. Conclusion The positive predictive value of FET–PET using the standard ratio method is high, but not high enough to replace stereotactic biopsy in this highly selected study cohort. Whether the calculation of FET uptake in the early phase and/or the evaluation of uptake kinetics will improve the positive predictive value of FET–PET deserves prospective evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Dooms GC, Hecht S, Brant-Zawadzki M et al (1986) Brain radiation lesions: MR imaging. Radiology 158:149–155

    PubMed  CAS  Google Scholar 

  2. Floeth FW, Wittsack HJ, Engelbrecht V et al (2002) Comparative follow-up of enhancement phenomena with MRI and Proton MR Spectroscopic Imaging after intralesional immunotherapy in glioblastoma—report of two exceptional cases. Zentralbl Neurochir 63:23–28

    Article  PubMed  CAS  Google Scholar 

  3. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR Imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    PubMed  CAS  Google Scholar 

  4. Ross DA, Sandler HM, Balter JM et al (2002) Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumours. J Neurooncol 56:175–181

    Article  PubMed  Google Scholar 

  5. Chang EL, Loeffler JS, Riese NE et al (1998) Survival results from a phase I study of etonidazole and radiotherapy in patients with malignant glioma. Int J Radiat Oncol Biol Phys 40:65–70

    Article  PubMed  CAS  Google Scholar 

  6. Floeth FW, Shand N, Bojar H et al (2002) Local inflammation and devascularization—in vivo mechanisms of the “bystander effect” in VPC-mediated HSV-Tk/GCV gene therapy for human malignant glioma. Cancer Gene Ther 8:843–851

    Article  CAS  Google Scholar 

  7. Goetz C, Riva P, Poepperl G et al (2003) Locoregional radioimmunotherapy in selected patients with malignant glioma: experiences, side effects and survival times. J Neurooncol 62:321–328

    Article  PubMed  CAS  Google Scholar 

  8. Kreth FW, Faist M, Warnke PC et al (1995) Interstitial radiosurgery of low-grade gliomas. J Neurosurg 82:418–429

    PubMed  CAS  Google Scholar 

  9. Kreth FW, Warnke PC, Scheremet R et al (1993) Surgical resection and radiation therapy versus biopsy and radiation therapy in the treatment of glioblastoma multiforme. J Neurosurg 78:762–766

    Article  PubMed  CAS  Google Scholar 

  10. Mardor Y, Roth Y, Lidar Z et al (2001) Monitoring response to convection-enhanced Taxol delivery in brain tumour patients using diffusion-weighted magnetic resonance imaging. Cancer Res 61:4971–4973

    PubMed  CAS  Google Scholar 

  11. Westphal M, Hilt DC, Bortey E et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 5:79–88

    Article  PubMed  CAS  Google Scholar 

  12. Westphal M, Tonn JC, Ram Z (eds) (2003) Local therapies for glioma: present status and future developments. Acta Neurochir Suppl, Springer, Vienna

  13. Stenberg L, Englund E, Wirestam R et al (2006) Dynamic susceptibility contrast-enhanced perfusion magnetic resonance (MR) imaging combined with contrast-enhanced MR imaging in the follow-up of immunogene-treated glioblastoma multiforme. Acta Radiol 47:852–861

    Article  PubMed  CAS  Google Scholar 

  14. Zeng QS, Li CF, Liu H et al (2007) Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiat Oncol Biol Phys 68:151–158. Epub 2007 Feb 7

    PubMed  Google Scholar 

  15. Poepperl G, Götz C, Rachinger W et al (2004) Value of O-(2-[18F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470

    Article  CAS  Google Scholar 

  16. Rachinger W, Goetz C, Poepperl G et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511

    Article  PubMed  Google Scholar 

  17. Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  PubMed  CAS  Google Scholar 

  18. Olivero WC, Dulebohn SC, Lister JR (1995) The use of PET in evaluating patients with primary brain tumours: is it useful? J Neurol Neurosurg Psychiatry 58:250–252

    PubMed  CAS  Google Scholar 

  19. Ricci PE, Karis JP, Heiserman JE, Fram EK et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19:407–413

    PubMed  CAS  Google Scholar 

  20. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    PubMed  CAS  Google Scholar 

  21. Weber WA, Wester HJ, Grosu A et al (2000) O-(2-[18F]Fluoroethyl)-l-tyrosine and l-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27:542–549

    Article  PubMed  CAS  Google Scholar 

  22. Wester HJ, Herz M, Weber W et al (1999) Synthesis and radiopharmacology of O-(2-[18F]fluorethyl)-l-tyrosine for tumor imaging. J Nucl Med 40:205–212

    PubMed  CAS  Google Scholar 

  23. Poepperl G, Goldbrunner R, Gildehaus FJ et al (2005) O-(2-[18F]fluoroethyl)-l-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32:1018–1025

    Article  CAS  Google Scholar 

  24. Poepperl G, Kreth FW, Herms J et al (2006) Analysis of 18F-FET–PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403

    CAS  Google Scholar 

  25. Floeth FW, Pauleit D, Wittsack HJ et al (2005) Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-l-tyrosine and magnetic resonance spectroscopy. J Neurosurg 102:318–327

    PubMed  Google Scholar 

  26. Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-l-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687

    Article  PubMed  Google Scholar 

  27. Kreth FW, Muacevic A, Medele R et al (2001) The risk of hemorrhage after image guided stereotactic biopsy of intra-axial brain tumours—a retrospective study. Acta Neurochir 143:539–546

    Article  CAS  Google Scholar 

  28. Kleihues P, Cavenee WK (2000) Tumours of the nervous system. Pathology and Genetics. IARC Press, Lyon, France

    Google Scholar 

  29. Poepperl G, Goetz C, Gildehaus FJ et al (2002) Initial experiences with adjuvant locoregional radioimmunotherapy using 131I-labeled monoclonal antibodies against tenascin (BC-4) for treatment of glioma (WHO III and IV). Nuklearmedizin 41:120–128

    Google Scholar 

  30. Beck TJ, Kreth FW, Beyer W et al (2007) Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers Surg Med 39:386–393

    Article  PubMed  Google Scholar 

  31. Forsyth PA, Kelly PJ, Cascino TL et al (1995) Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J Neurosurg 82:436–444

    PubMed  CAS  Google Scholar 

  32. Kreth FW, Muacevic A (1999) Stereotactic biopsy and hemorrhage. J Neurosurg 90:181–182

    PubMed  CAS  Google Scholar 

  33. Thompson TP, Lunsford LD, Kondziolka D (1999) Distinguishing recurrent tumour and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 73:9–14

    Article  PubMed  CAS  Google Scholar 

  34. Kracht LW, Friese M, Herholz K et al (2003) Methyl-[(11)C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    Article  PubMed  CAS  Google Scholar 

  35. Fortin D, Cairncross GJ, Hammond RR (1999) Oligodendroglioma: an appraisal of recent data pertaining to diagnosis and treatment. Neurosurgery 45:1279–1291; discussion 1191

    Article  PubMed  CAS  Google Scholar 

  36. Floeth FW, Pauleit D, Sabel M et al (2006) 18F-FET–PET differentiation of ring-enhancing brain lesions. J Nucl Med 47:776–782

    PubMed  CAS  Google Scholar 

  37. Ostertag CB, Weigel K, Warnke P et al (1983) Sequential morphological changes in the dog brain after interstitial iodine-125 irradiation. Neurosurgery 13:523–528

    Article  PubMed  CAS  Google Scholar 

  38. Ceyssens S, Van Laere K, de Groot T et al (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 27:1432–1437

    PubMed  CAS  Google Scholar 

  39. Weckesser M, Langen KJ, Rickert CH et al (2005) O-(2-[(18)F]fluorethyl)-l-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32:422–429

    Article  PubMed  CAS  Google Scholar 

  40. Pirotte B, Goldman S, Massager N et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was supported by grant 10-3163-Wi3 from Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. W. Kreth.

Additional information

Jan-Hinnerk Mehrkens and Gabriele Pöpperl have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrkens, J.H., Pöpperl, G., Rachinger, W. et al. The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88, 27–35 (2008). https://doi.org/10.1007/s11060-008-9526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9526-4

Keywords

Navigation