Skip to main content
Log in

Assessment of image-guided CyberKnife@ radiosurgery for metastatic spine tumors

  • Clinical Study - patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Spinal metastases are associated with significant symptoms. From September 2005 to September 2007, 69 consecutive patients with 127 malignant spine metastatic lesions were treated at Wanfang Hospital with CyberKnife@ (CK) radiosurgery. The radiosurgery dose ranged from 10 to 30 Gy (mean 15.5 Gy) prescribed to the 75–85% isodose line that encompassed at least 95% of the tumor volume. We used fiducials as tracking landmarks for CK treatment of the thoracic and lumbar spine. A torso anthropomorphic phantom and GafChromic MD-55 films were used to verify the accuracy of CK radiosurgery and 2D dose distribution, demonstrated high targeting accuracy with 2% average deviation of the measured dose from the estimated dose at the set-up center and less than 5% dose deviation in 2D isodose curve. Visual Analogue Scale and Oswestry Disability Index questionnaires were used to monitor functional outcome after radiosurgery. Local tumor control at 10 months was 96.8%. Mean pain scores decreased significantly from 65 to 30 after treatment (P = 0.001). Functional disability was significantly improved after treatment (P = 0.002). The most common treatment toxicities were nausea and fatigue. In conclusion, CK radiosurgery is a well-tolerated and effective treatment for spine tumors with good local tumor control and a favorable outcome on pain and functional improvement after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu J, Wong R, Johnston M, Bezjak A et al (2003) Meta-analysis of dose-fractionated radiotherapy trials for the palliation of painful bone metastases. Int J Radiat Oncol Biol Phys 55:594–605. doi:10.1016/S0360-3016(02)04147-0

    PubMed  Google Scholar 

  2. Cole DJ (1989) A randomized trial of a single treatment versus conventional fractionation in the palliative radiotherapy of painful bone metastases. Clin Oncol 1:59–62. doi:10.1016/S0936-6555(89)80035-4

    Article  CAS  Google Scholar 

  3. Gerszten PC, Welch WC (2004) CyberKnife radiosurgery for metastatic spine tumors. Neurosurg Clin N Am 15:491–501. doi:10.1016/j.nec.2004.04.013

    Article  PubMed  Google Scholar 

  4. Chang SD, Main W, Martin DP et al (2003) A robotic frameless stereotactic radiosurgical system. Neurosurgery 5(2):140–147. doi:10.1097/00006123-200301000-00018

    Article  Google Scholar 

  5. Chang SD (2005) The CyberKnife: potential in patients with cranial and spinal tumors. Am J Cancer 4:383–393. doi:10.2165/00024669-200504060-00005

    Article  Google Scholar 

  6. Benzil DL, Saboori M, Mogilner AY et al (2004) Safety and efficacy of stereotactic radiosurgery for tumors of the spine. J Neurosurg 101:413–418

    PubMed  Google Scholar 

  7. Desalles AA, Pedroso A, Medin P et al (2004) Spinal lesions treated with Novalis shaped beam intensity modulated radiosurgery and stereotactic radiotherapy. J Neurosurg 101:435–440

    Article  Google Scholar 

  8. Medin P, Solberg T, DeSalles A et al (2002) Investigations of a minimally invasive method for treatment of spinal malignancies with LINAC stereotactic radiation therapy: accuracy and animal studies. Int J Radiat Oncol Biol Phys 52:1111–1122. doi:10.1016/S0360-3016(01)02762-6

    PubMed  Google Scholar 

  9. Gerszten PC, Ozhasoglu C, Burton SA et al (2004) CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery 55:89–98

    PubMed  Google Scholar 

  10. Adler JR Jr, Chang SD, Murphy MJ et al (1997) The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128. doi:10.1159/000099863

    Article  PubMed  Google Scholar 

  11. Kuo JS, Yu C, Petrovich Z et al (2003) The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 53:1235–1239. doi:10.1227/01.NEU.0000089485.47590.05

    Article  PubMed  Google Scholar 

  12. Adler J, Murphy M, Chang S et al (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1–8. doi:10.1097/00006123-199901000-00001

    Article  Google Scholar 

  13. Ho AK, Fu D, Cotrutz C et al (2007) A study of the accuracay of CyberKnife spinal radiosurgery using skeletal structure tracking. Oper Neurosurg 60(2):S147–S156

    Google Scholar 

  14. Ryu SI, Chang SD, Kim DH et al (2001) Image guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 49:838–846. doi:10.1097/00006123-200110000-00011

    Article  PubMed  CAS  Google Scholar 

  15. Gerszten P, Ozhasoglu C, Burton S et al (2002) Feasibility of frameless single-fraction stereotactic radiosurgery for spinal lesions. Neurosurg Focus 13:1–6. doi:10.3171/foc.2002.13.4.3

    Article  Google Scholar 

  16. Dieterich S (2008) Pawlicki Todd. CyberKnife image-guided delivery and quality assurance. Int J Radiat Oncol Biol Phys 71(1):S126–S130. doi:10.1016/j.ijrobp.2007.08.081

    PubMed  Google Scholar 

  17. Murphy MJ, Chang S, Gibbs I et al (2001) Image-guided radiosurgery in the treatment of spinal metastases. Neurosurg Focus 11:1–7. doi:10.3171/foc.2001.11.6.7

    Article  Google Scholar 

  18. Niroomand-Rad A, Blackwell CR, Coursey BM et al (1998) Radiochromic film dosimetry: recommendations of AAPM Radiation Therapy Committee Task Group 55—American Association of Physicists in Medicine. Med Phys 25:2093–2115. doi:10.1118/1.598407

    Article  PubMed  CAS  Google Scholar 

  19. Yu C, Main W, Taylor D et al (2004) An anthropomorphic phantom study of the accuracy of CyberKnife spinal radiosurgery. Neurosurgery 55(5):1138–1149. doi:10.1227/01.NEU.0000141080.54647.11

    Article  PubMed  Google Scholar 

  20. Weber D, Trofimov A, Delaney T et al (2004) A treatment planning comparison of intensity modulated photon and proton therapy for paraspinal sarcoma. Int J Radiat Oncol Biol Phys 58(5):1596–1606. doi:10.1016/j.ijrobp.2003.11.028

    Article  PubMed  Google Scholar 

  21. Kim YH, Fayos JV (1981) Radiation tolerance of the cervical spinal cord. Radiology 139:473–478

    PubMed  CAS  Google Scholar 

  22. Zanoli G Stromquist B, Jonsson B et al (2001) Visual analog scales for interpretation of back and leg pain intensity in patients operated for degenerative lumbar spine disorders. Spine 26:2375–2380. doi:10.1097/00007632-200111010-00015

    Google Scholar 

  23. Flickinger JC, Lunsford LD, Somaza S et al (1996) Radiosurgery: its role in brain metastasis management. Neurosurg Clin N Am 7:497–504

    PubMed  CAS  Google Scholar 

  24. Chimamoto S, Inoue T, Shiomi H et al (2002) CyberKnife stereotactic irradiation for metastatic brain tumor. Radiat Med 20:299–304

    Google Scholar 

  25. Bruner D, Winter K, Hartsell W et al (2004) Prospective health related quality of life valuations (utilities) of 8 Gy in 1 fraction vs 30 Gy in 10 fractions for palliation of painful bone metastases: preliminary results of RTOG 97-14. Int J Radiat Oncol Biol Phys 60:S142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei-Chyn Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, JT., Lin, JW., Chiu, WT. et al. Assessment of image-guided CyberKnife@ radiosurgery for metastatic spine tumors. J Neurooncol 94, 119–127 (2009). https://doi.org/10.1007/s11060-009-9814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9814-7

Keywords

Navigation