Skip to main content

Advertisement

Log in

MRI findings and pathological features in early-stage glioblastoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is an important diagnostic tool for glioblastoma, with almost all cases showing characteristic imaging findings such as a heterogeneous-ring enhanced pattern associated with significant edema. However, MRI findings for early-stage glioblastoma are less clear. In this study, a retrospective review of MRI findings in five patients showed slight T2WI signal changes on initial scans that developed into typical imaging findings of a ring-like or heterogeneously enhanced bulky tumor within 6 months. The diagnoses based on initial MRI were low grade glioma in three cases, venous thrombosis in one case, and uncertain in one case. Four cases were treated with gross total resection, while one case underwent biopsy. Immunohistochemical examinations showed that two cases were p53-positive, and that all cases were IDH1 R132H-negative and had overexpression of EGFR. FISH analysis showed that all cases were 1p19q LOH-negative. De novo glioblastoma was the final diagnosis in all cases. Our results show that initial MRI findings in early-stage glioblastoma of small ill-defined T2WI hyperintense lesions with poor contrast develop to bulky mass lesions with typical findings for glioblastoma in as short a period as 2.5 months. The early MRI findings are difficult to distinguish from those for non-neoplastic conditions, including ischemic, degenerative or demyelinating processes. Thus, there is a need for proactive diagnosis of glioblastoma using short-interval MRI scans over several weeks, other imaging modalities, and biopsy or resection, particularly given the extremely poor prognosis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF (1998) The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol 49:436–440

    Article  CAS  PubMed  Google Scholar 

  2. Oyama H, Ando Y, Aoki S, Kito A, Maki H, Hattori K, Tanahashi K (2010) Glioblastoma detected at the initial stage in its developmental process case report. Neurol Med Chir (Tokyo) 50:414–417

    Article  Google Scholar 

  3. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neurooncol 27:65–73

    Article  CAS  PubMed  Google Scholar 

  4. Utsuki S, Oka H, Miyajima Y, Kijima C, Yasui Y, Fujii K (2012) Glioblastoma without remarkable contrast enhancement on magnetic resonance imaging. ICJM 3:439–445. doi:10.4236/ijcm.2012.36082

    Google Scholar 

  5. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453. doi:10.2353/ajpath.2007.070011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899. doi:10.1158/0008-5472.CAN-04-1337

    Article  CAS  PubMed  Google Scholar 

  7. Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2000) Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 80:65–72

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H (2000) Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol 59:539–543

    CAS  PubMed  Google Scholar 

  9. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602. doi:10.1007/s00401-008-0455-2

    Article  CAS  PubMed  Google Scholar 

  10. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153. doi:10.2353/ajpath.2009.080958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Louis DN, Ohgaki H, Weistler OD, Cavenee WK (2007) WHO Classification of Tumours of the Central Nervous System. 4th edn. IARC Press, Lyon

  13. Friedman HS, McLendon RE, Kerby T, Dugan M, Bigner SH, Henry AJ, Ashley DM, Krischer J, Lovell S, Rasheed K, Marchev F, Seman AJ, Cokgor I, Rich J, Stewart E, Colvin OM, Provenzale JM, Bigner DD, Haglund MM, Friedman AH, Modrich PL (1998) DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol 16:3851–3857

    CAS  PubMed  Google Scholar 

  14. Newcomb EW, Cohen H, Lee SR, Bhalla SK, Bloom J, Hayes RL, Miller DC (1998) Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol 8:655–667

    Article  CAS  PubMed  Google Scholar 

  15. Chang KW, Sarraj S, Lin SC, Tsai PI, Solt D (2000) P53 expression, p53 and Ha-ras mutation and telomerase activation during nitrosamine-mediated hamster pouch carcinogenesis. Carcinogenesis 21:1441–1451

    Article  CAS  PubMed  Google Scholar 

  16. Kramar F, Zemanova Z, Michalova K, Babicka L, Ransdorfova S, Hrabal P, Kozler P (2007) Cytogenetic analyses in 81 patients with brain gliomas: correlation with clinical outcome and morphological data. J Neurooncol 84:201–211. doi:10.1007/s11060-007-9358-7

    Article  PubMed  Google Scholar 

  17. Wharton SB, Maltby E, Jellinek DA, Levy D, Atkey N, Hibberd S, Crimmins D, Stoeber K, Williams GH (2007) Subtypes of oligodendroglioma defined by 1p,19q deletions, differ in the proportion of apoptotic cells but not in replication-licensed non-proliferating cells. Acta Neuropathol 113:119–127. doi:10.1007/s00401-006-0177-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772. doi:10.1158/1078-0432.CCR-12-3002

    Article  CAS  PubMed  Google Scholar 

  19. Cohen-Gadol AA, DiLuna ML, Bannykh SI, Piepmeier JM, Spencer DD (2004) Non- enhancing de novo glioblastoma: report of two cases. Neurosurg Rev 27:281–285. doi:10.1007/s10143-004-0346-5

    Article  PubMed  Google Scholar 

  20. Okamoto K, Ito J, Takahashi N, Ishikawa K, Furusawa T, Tokiguchi S, Sakai K (2002) MRI of high-grade astrocytic tumors: early appearance and evolution. Neuroradiology 44:395–402. doi:10.1007/s00234-001-0725-3

    Article  CAS  PubMed  Google Scholar 

  21. Landy HJ, Lee TT, Potter P, Feun L, Markoe A (2000) Early MRI findings in high grade glioma. J Neurooncol 47:65–72

    Article  CAS  PubMed  Google Scholar 

  22. Ono K, Tohma Y, Yoshida M, Takamori M (2000) A case of glioblastoma multiforme which indicated the early stage on brain MRI. No To Shinkei 52:325–329

  23. Dagher AP, Smirniotopoulos J (1996) Tumefactive demyelinating lesions. Neuroradiology 38:560–565

    Article  CAS  PubMed  Google Scholar 

  24. Yetkin Z, Haughton VM (1995) Atypical demyelinating lesions in patients with multiple sclerosis. Neuroradiology 37:284–286

    Article  CAS  PubMed  Google Scholar 

  25. Osborn AG (1994) Astrocytomas and other glial neoplasms. In: Patterson AS (ed) Diagnostic Neuroradiology. A Text/Atlas Mosby, St. Louis, pp 529–578

    Google Scholar 

  26. Scott JN, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    Article  CAS  PubMed  Google Scholar 

  27. Barker FG 2nd, Chang SM, Huhn SL, Davis RL, Gutin PH, McDermott MW, Wilson CB, Prados MD (1997) Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer 80:936–941. doi:10.1002/(SICI)1097-0142(19970901)80:5<936:AID-CNCR15>3.0.CO;2-X

    Article  PubMed  Google Scholar 

  28. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8. doi:10.3171/2011.2.JNS10998

    Article  PubMed  Google Scholar 

  29. Bradley WG, Shey RB (2000) MR imaging evaluation of seizures. Radiology 214:651–656. doi:10.1148/radiology.214.3.r00mr42651

    Article  CAS  PubMed  Google Scholar 

  30. Baehring JM, Bi WL, Bannykh S, Piepmeier JM, Fulbright RK (2007) Diffusion MRI in the early diagnosis of malignant glioma. J Neurooncol 82:221–225. doi:10.1007/s11060-006-9273-3

    Article  PubMed  Google Scholar 

  31. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, Bruneau M, Rorive S, David P, Brotchi J (2009) Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 64:471–481. doi:10.1227/01.NEU.0000338949.94496.85 (Discussion: 481)

    Article  PubMed  Google Scholar 

  32. Bader JB, Samnick S, Moringlane JR, Feiden W, Schaefer A, Kremp S, Kirsch CM (1999) Evaluation of l-3-[123I]iodo-alpha-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med 26:144–151

    Article  CAS  PubMed  Google Scholar 

  33. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 19:677–683

    Article  PubMed  Google Scholar 

  34. Gumprecht H, Grosu AL, Souvatsoglou M, Dzewas B, Weber WA, Lumenta CB (2007) 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas. Zentralbl Neurochir 68:19–23. doi:10.1055/s-2007-970601

    Article  CAS  PubMed  Google Scholar 

  35. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N Engl J Med 352: 987–996 doi:10.1056/NEJMoa043330

  36. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ideguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ideguchi, M., Kajiwara, K., Goto, H. et al. MRI findings and pathological features in early-stage glioblastoma. J Neurooncol 123, 289–297 (2015). https://doi.org/10.1007/s11060-015-1797-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1797-y

Keywords

Navigation