Skip to main content

Advertisement

Log in

Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Magnetic resonance spectroscopy (MRS) can explore aging at a molecular level. In this study, we investigated the relationships between regional concentrations of metabolites (such as choline, creatine, myo-inositol, and N-acetyl-aspartate) and normal aging in 30 cognitively normal subjects (15 women and 15 men, age range 22–82, mean = 49.9 ± 18.3 years) using quantitative proton magnetic resonance spectroscopy. All MR scans were performed using a 3 T scanner. Point resolved spectroscopy was used as the volume selection method for the region-of-interest and the excitation method for water suppression. Single voxel spectroscopy with short echo time of 39 ms and repetition time of 2,000 ms was employed. Single voxels were placed in the limbic regions, i.e., anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and left and right hippocampi. Cerebrospinal fluid normalization and T1 and T2 correction factors were implemented in the calculation of absolute metabolite concentrations. A standardized T1W 3D volumetric fast field echo and axial T2-weighted fast spin-echo images were also acquired. Our results showed significant positive correlation of choline (r = 0.545, p = 0.002), creatine (r = 0.571, p = 0.001), and N-acetyl-aspartate (r = 0.674, p < 0.001) in the ACC; choline (r = 0.614, p < 0.001), creatine (r = 0.670, p < 0.001), and N-acetyl-aspartate (r = 0.528, p = 0.003) in the PCC; and NAA (r = 0.409, p = 0.025) in the left hippocampus, with age. No significant gender effect on metabolite concentrations was found. In aging, increases in choline and creatine might suggest glial proliferation, and an increase in N-acetyl-aspartate might indicate neuronal hypertrophy. Such findings highlight the metabolic changes of ACC and PCC with age, which could be compensatory to an increased energy demand coupled with a lower cerebral blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ances BM, Leontiev O, Perthen JE, Liang C, Lansing AE, Buxton RB (2008) Regional differences in the coupling of cerebral blood flow and oxygen metabolic changes in response to activation: implications for BOLD-fMRI. NeuroImage 29:1510–1521

    Article  Google Scholar 

  • Angelie E, Bonmartin A, Boudraa A, Gonnaud PM, Mallet JJ, Sappey-Marinier D (2001) Regional differences and metabolic changes in normal aging of the human brain: proton MR spectroscopic imaging study. AJNR Am J Neuroradiol 22:119–127

    CAS  PubMed  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102:511–16

    Article  CAS  PubMed  Google Scholar 

  • Brooks JCW, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605

    Article  CAS  PubMed  Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40

    Article  CAS  PubMed  Google Scholar 

  • Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17:1394–1402

    Article  PubMed  Google Scholar 

  • Chang L, Ernst T, Poland RE, Jenden DJ (1996) In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 58:2049–2056

    Article  CAS  PubMed  Google Scholar 

  • Charlton RA, McIntyre DJO, Howe FA, Morris RG, Markus HS (2007) The relationship between white matter brain metabolites and cognition in normal aging: the GENIE study. Brain Research 1164:108–16

    Article  CAS  PubMed  Google Scholar 

  • Chiu HFK, Lee HC, Chung WS, Kwong PK (1994) Reliability and validity of the Cantonese version of Mini-Mental State Examination—a preliminary study. J Hong Kong Coll Psychiatr 4:25–28

    Google Scholar 

  • Chu LW, Chiu KC, Hui SL, Yu GKK, Tsui WJC, Lee PWH (2000) The reliability and validity of the Alzheimer’s Disease Assessment Scale cognitive Subscale (ADAS-cog) among the elderly Chinese in Hong Kong. Annals Academy of Singapore 29:478–85

    Google Scholar 

  • Chu LW, Tam S, Lee PWH, Yik PY, Song YQ, Cheung BMY, Lam KSL (2009) Late-life body mass index and waist circumference in amnestic mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 17:223–32

    PubMed  Google Scholar 

  • Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8:521–545

    Article  CAS  PubMed  Google Scholar 

  • de Graff RA (2007) In vivo NMR spectroscopy: principles and techniques, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Finch CE (2003) Neurons, glia and plasticity in normal brain aging. Neurobiol Aging 24:S123–S127

    Article  CAS  PubMed  Google Scholar 

  • Glanville NT, Byers DM, Cook HW, Spence MW, Palmer FB (1989) Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochem Biophys Acta 1004:169–79

    Article  CAS  PubMed  Google Scholar 

  • Grachev ID, Swarnkar A, Szeverenyi NM, Ramachandran TS, Apkarian AV (2001) Aging alters regional multichemical profile of the human brain: an in vivo 1H-MRS study of young versus middle-aged subjects. J Neurochem 77:292–303

    Article  CAS  PubMed  Google Scholar 

  • Gruber S, Pinker K, Riederer F, Chmelík M, Stadlbauer A, Bittšanský M, Mlynárik V, Frey R, Serles W, Bodamer O, Moser E (2008) Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol 68:320–327

    Article  CAS  PubMed  Google Scholar 

  • Gruetter R, Weisdorf SA, Rajanayagan V, Terpstra M, Merkle H, Truwit CL, Garwood M, Nyberg SL, Ugurbil K (1998) Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 135:260–264

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Miyoshi H, Otsuka H, Nishitani H, Uno M (2001) Multivariate analysis of regional metabolic differences in normal ageing on localised quantitative proton MR spectroscopy. Neuroradiol 43:448–452

    Article  CAS  Google Scholar 

  • Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 87–96

  • Heinzer-Schweizer S, De Zanche N, Pavan M, Mens G, Struzenegger U, Henning A, Boesiger P (2010) In-vivo assessment of tissue metabolite levels using 1H MRS and the Electric REference To access In vivo Concentrations (ERETIC) method. NMR in Biomed 23:406–413

    CAS  Google Scholar 

  • Hirono N, Mori E, Ishii K, Ikejiri Y, Imamura T, Shimomura T, Hashimoto M, Yamashita H, Sasaki M (1998) Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 64:552–554

    Article  CAS  PubMed  Google Scholar 

  • Iacono D, O’Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, An Y, West MJ, Crain B, Troncoso JC (2008) Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropathol Exp Neurol 67:578–89

    Article  PubMed Central  PubMed  Google Scholar 

  • Imamura K (2003) Proton MR spectroscopy of the brain with a focus on chemical issues. Magn Reson Med 2:117–132

    CAS  Google Scholar 

  • Jansen JFA, Backes WH, Nicolay K, Kooi ME (2006) 1H MRS of brain absolute quantification of metabolites. Radiology 240:318–332

    Article  PubMed  Google Scholar 

  • Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: a 1H MRS study. Neurology 55:210–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kreis R, Slotboom J, Hofmann L, Boesch C (2005) Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med 54:761–8

    Article  CAS  PubMed  Google Scholar 

  • Leary SM, Brex PA, MacManus DG, Parker GJM, Barker GJ, Miller DH, Thompson AJ (2000) A 1H magnetic resonance spectroscopy study of aging in parietal white matter: implications for trials in multiple sclerosis. Magn Reson Imaging 18:455–459

    Article  CAS  PubMed  Google Scholar 

  • Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci 105:4441–4446

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Xu F, Rodrigue KM, Cheng Y, Flicker B, Hebrank AC, Uh J, Park DC (2011) Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex 21:1426–1434

    Article  PubMed  Google Scholar 

  • Mak HK, Zhang Z, Yau KKW, Zhang L, Chan Q, Chu LW (2011) Efficacy of voxel-based morphometry with DARTEL and standard registration as imaging biomarkers in Alzheimer's patients and cognitively normal older adults at 3.0 Tesla MR imaging. J Alzheimer’s Dis 23:655–664

    Google Scholar 

  • Martin WRW (2007) MR spectroscopy in neurodegenerative disease. Mol Imaging Biol 9:196–203

    Article  PubMed  Google Scholar 

  • Maguire EA, Frith CD (2003) Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Brain 126:1511–1523

    Article  PubMed  Google Scholar 

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 42:85–94

    Article  CAS  PubMed  Google Scholar 

  • Milham MP, Erickson KI, Banich MT, Kramer AF, Webb A, Wszalek T, Cohen NJ (2002) Attention control in the aging brain: insights from an fMRI study of the Stroop task. Brain Cogn 49:277–96

    Article  PubMed  Google Scholar 

  • Mlynarik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331

    Article  CAS  PubMed  Google Scholar 

  • Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–19

    Article  CAS  PubMed  Google Scholar 

  • Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    Article  CAS  PubMed  Google Scholar 

  • Nielson KA, Douville KL, Seidenberg M, Woodard JL, Miller SK, Franczak M, Antuono P, Rao SM (2006) Age-related functional recruitment for famous name recognition: an event-related fMRI study. Neurobiol Aging 27:1494–1504

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L, Crain BJ, Pletnikova O, Rudow G, Iacono D, Riudavets MA, Driscoll I, Price DL, Martin LJ, Troncoso JC (2009) Neuropathologic studies of the Baltimore Longitudinal Study of Aging (BLSA). J Alzheimer’s Dis 18:665–675

    Google Scholar 

  • Pardo JV, Lee JT, Sheikh SA, Surerus-Johnson C, Shah H, Munch KR, Carlis JV, Lewis SM, Kuskowski MA, Dysken MW (2007) Where the brain grows old: decline in anterior cingulated and medial prefrontal function with normal aging. NeuroImage 35:1231–37

    Article  PubMed Central  PubMed  Google Scholar 

  • Petersen RC, Smith G, Kokman E, Ivnik RJ, Tangalos EG (1992) Memory function in normal aging. Neurology 42:396–401

    Article  CAS  PubMed  Google Scholar 

  • Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO (1999) In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med 41:276–284

    Article  CAS  PubMed  Google Scholar 

  • Raininko R, Mattsson P (2010) Metabolite concentrations in supraventricular white matter from teenage to early old age: a short echo time 1H magnetic resonance spectroscopy (MRS) study. Acta Radiologica 51:309–315

    Article  PubMed  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon-4 allele for apolipoprotein E. N Engl J Med 334:752–758

    Article  CAS  PubMed  Google Scholar 

  • Restom K, Bangen KJ, Bondi MW, Perthen JE, Liu TT (2007) Cerebral blood flow and BOLD responses to a memory encoding task: a comparison between healthy young and elderly adults. NeuroImage 37:430–439

    Article  PubMed Central  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science 17:177–182

    Article  Google Scholar 

  • Reyngoudt H, De Deene Y, Descamps B, Paemeleire K, Achten E (2010) 1H-MRS of brain metabolites in migraine without aura: absolute quantification using the phantom replacement technique. Magn Reson Mater Phys 4:227–241

    Article  Google Scholar 

  • Reyngoudt H, Claeys T, Vlerick L, Verleden S, Acou M, Deblaere K, De Deene Y, Audenaert K, Goethals I, Achten E (2012) Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a 1H-MRS study. Eur J Radiol 81:e223–e231

    Article  PubMed  Google Scholar 

  • Riudavets MA, Iacono D, Resnick SM, O’Brien R, Zonderman AB, Martin LJ, Rudow G, Pletnikova O, Troncoso JC (2007) Resistance to Alzheimer’s pathology is associated with nuclear hypertrophy in neurons. Neurobiol Aging 28:1484–1492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Tan J (1998) In vivo MR spectroscopy of human dementia. Neuroimaging Clin N Am 8:809–22

    CAS  PubMed  Google Scholar 

  • Ross AJ, Sachdev PS (2004) Magnetic resonance spectroscopy in cognitive research. Brain Research Reviews 44:83–102

    Article  CAS  PubMed  Google Scholar 

  • Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM (1999) Aging of the adult human brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging 9:711–16

    Article  CAS  PubMed  Google Scholar 

  • Schuff N, Ezekiel F, Gamst AC, Amend DL, Capizzano AA, Maudsley AA, Weiner MW (2001) Region and tissue differences of metabolites in normally aged brain using multislice 1H magnetic resonance spectroscopic imaging. Magn Reson Med 45:899–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinno H, Inagaki T, Miyaoka T, Okazaki S, Kawamukai T, Utani E, Inami Y, Horiguchi J (2007) A decrease in N-acetylaspartate and an increase in myoinositol in the anterior cingulate gyrus are associated with behavioral and psychological symptoms in Alzheimer's disease. J Neurol Sci 260:132–138

    Article  CAS  PubMed  Google Scholar 

  • Smith CD, Landrum W, Carney JM, Landfield PW, Avison MJ (1997) Brain creatine kinase with aging in F-344 rats: analysis by saturation transfer magnetic spectroscopy. Neurobiol Aging 18:617–22

    Article  CAS  PubMed  Google Scholar 

  • Sperling RA, Bates JF, Chua EF, Cocchiarella AJ, Rentz DM, Rosen BR, Schacter DL, Albert MS (2003) fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:44–50

    Article  CAS  PubMed  Google Scholar 

  • Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035

    Article  Google Scholar 

  • Terry RD, DeTteresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21:530–539

    Article  CAS  PubMed  Google Scholar 

  • Träber F, Block W, Lamerichs R, Gieseke J, Schild HH (2004) 1H metabolite relaxation times at 3.0 Tesla: measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. Magn Reson Imaging 19:537–545

    Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–89

    CAS  PubMed  Google Scholar 

  • Ugurbil K, Adriany G, Andersen P, Chen W, Gruetter R, Hu X, Merkle H, Kim DS, Kim SG, Strupp J, Zhu XH, Ogawa S (2000) Magnetic resonance studies of brain function and neurochemistry. Annu Rev Biomed Eng 2:633–660

    Article  CAS  PubMed  Google Scholar 

  • Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24:321–31

    Article  PubMed  Google Scholar 

  • Wang Z, Zhao C, Yu L, Zhou W, Li K (2009) Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease. Acta Radiologica 50:312–319

    Article  PubMed  Google Scholar 

  • Weschler DA (1997) Weschler Memory Scale-III. Psychological Corp, New York

    Google Scholar 

  • West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    Article  CAS  PubMed  Google Scholar 

  • Yankner B, Lu T, Loerch P (2008) The aging brain. Annul Rev Pathol Mech Dis 3:41–66

    Article  CAS  Google Scholar 

  • Yeo RA, Hill D, Campbell R, Vigil J, Brooks WM (2000) Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation. Developmental Neuropsychology 17:143–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The University of Hong Kong seeding funding for research [grant number 20460015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Ka-Fung Mak.

About this article

Cite this article

Chiu, PW., Mak, H.KF., Yau, K.KW. et al. Metabolic changes in the anterior and posterior cingulate cortices of the normal aging brain: proton magnetic resonance spectroscopy study at 3 T. AGE 36, 251–264 (2014). https://doi.org/10.1007/s11357-013-9545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9545-8

Keywords

Navigation