Skip to main content

Advertisement

Log in

The reduction of artifacts due to metal hip implants in CT-attenuation corrected PET images from hybrid PET/CT scanners

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

CT beam hardening artifacts near metal hip implants may erroneously enhance or diminish radiotracer uptake following CT attenuation correction (AC) of PET images. An artifact reduction algorithm (ARA) was developed to reduce metal artifacts in CT-based AC-PET. The algorithm employed a Bayes classifier to identify beam-hardening artifacts, followed by a partial correction of the attenuation map. ARA was implemented on phantom and patient 18F-FDG studies using a clinical PET/CT scanner. In phantom studies ARA successfully removed two artifacts of erroneously elevated uptake near a stainless steel hip prosthesis which were depicted in the standard CT-AC PET. ARA has also identified two targets absent on the scanner PET images. Target-to-background ratios were 1.5–3 times higher for ARA-PET than scanner images. In a patient study, metal artifacts were of lower intensity in ARA-PET as compared to standard images. Potentially, ARA may improve detectability of small lesions located near metal hip implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bar-Shalom R, Guralnik L, Tsalic M, Leiderman M, Frenkel A, Gaitini D, Ben-Nun A, Keidar Z, Israel O (2005) The additional value of PET/CT over PET in FDG imaging of oesophageal cancer. Eur J Nucl Med Mol Imaging 32(8):918–924

    Article  Google Scholar 

  2. Bar-Shalom R, Yefremov N, Guralnik L, Gaitini D, Frenkel A, Kuten A et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44(8):1200–1209

    Google Scholar 

  3. Beyer T., Townsend D.W., Brun T, Kinahan PE, Charron M, Roddy R et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    Google Scholar 

  4. Bujenovic S, Mannting F, Chakrabarti R, Ladnier D (2003) Artifactual 2-deoxy-2-[(18)F]fluoro-D-glucose localization surrounding metallic objects in a PET/CT scanner using CT-based attenuation correction. Mol Imaging Biol 5(1):20–22

    Article  Google Scholar 

  5. Burger C, Goerres G, Schoenes S, Buck A, Lonn AHR, von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med 29:922–927

    Article  Google Scholar 

  6. Coleman RE (2002) Is quantitation necessary for oncological PET studies? For Eur J Nucl Med Mol Imaging 29(1):133–135

    Article  Google Scholar 

  7. Connolly TJ (1978) Foundations of nuclear engineering. Wiley, New York, p 131

    Google Scholar 

  8. DiFilippo FP, Brunken RC (2005) Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J Nucl Med 46(3):436–443

    Google Scholar 

  9. Fukui MB, Blodgett TM, Meltzer CC (2003) PET/CT imaging in recurrent head and neck cancer. Semin Ultrasound CT MR 24(3):157–163

    Article  Google Scholar 

  10. Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    Google Scholar 

  11. Goerres G, Hany T, Kamel E, von Schulthess GK, Buck A (2002) Head and neck imaging with PET and PET/CT: artifacts from dental metallic implants. Eur J Nucl Med 29:367–370

    Article  Google Scholar 

  12. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River, p 699

    Google Scholar 

  13. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River, p 526

    Google Scholar 

  14. Graham MM (2002) Is quantitation necessary for oncological PET studies? Against. Eur J Nucl Med Mol Imaging 29(1):135–138

    Article  Google Scholar 

  15. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 13(4):601–609

    Article  Google Scholar 

  16. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. SIAM, New York, pp 118–124

    Google Scholar 

  17. Kalender WA, Hebel R, Ebersberger JA (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164:576–577

    Google Scholar 

  18. Kamel EM, Burger C, Buck A, von Schulthess GK, Goerres GW (2003) Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 13(4):724–728

    Google Scholar 

  19. Kamel E, Hany TF, Burger C, Treyer V, Lonn AHR, von Schulthess GK, Buck A (2002) CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J of Nucl Med 29:246–350

    Google Scholar 

  20. Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O (2005) The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med 46(3):444–449

    Google Scholar 

  21. Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined PET/CT scanner. Med Phys 25:2046–2053

    Article  Google Scholar 

  22. Lonn AHR (2003) Evaluation of method to minimize the effect of X-ray contrast in PET-CT attenuation correction. IEEE Nucl Sci Symp Conf Rec 3:2220–2221

    Google Scholar 

  23. Mawlawi O, Erasmus JJ, Pan T, Cody DD, Campbell R, Lonn AH, Kohlmyer S, Macapinlac HA, Podoloff DA (2006) Truncation artifact on PET/CT: impact on measurements of activity concentration and assessment of a correction algorithm. Am J Roentgenol 186(5):1458–1467

    Article  Google Scholar 

  24. Nuyts J, Stroobants S (2005) Reduction of attenuation correction artifacts in PET-CT. Conf Rec of the 2005 IEEE Nuc Sci Symp 4:1895–1899

    Article  Google Scholar 

  25. Ollinger JM, Fessler JA (1997) Positron-Emission Tomography. IEEE Trans Sig Proc 14:43–55

    Google Scholar 

  26. Robertson DD, Yuan J, Wang G, Vannier MW (1997) Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction. J Comput Assist Tomogr 21:293–298

    Article  Google Scholar 

  27. Tarantola G, Zito F, Gerundini P (2003) PET instrumentation and reconstruction algorithms in whole-body applications. J Nucl Med 44(5):756–769

    Google Scholar 

  28. Wang G, Snyder DL, O’Sullivan JA, Vannier MW (1996) Iterative deblurring for CT metal artifact reduction. IEEE Trans Med Imag 15:657– 664

    Article  Google Scholar 

  29. Watson CC, Rappoport V, Faul D, Townsend DW, Carney JP (2006) A method for calibrating the CT-based attenuation correction of PET in human tissue. IEEE Trans Nucl Sci 53(1):102–107

    Article  Google Scholar 

  30. Yazdia M, Gingras L, Beaulieu L (2005) An adaptive approach to metal artifact reduction in helical computed tomography for radiation therapy treatment planning: experimental and clinical studies. Int J Radiat Oncol Biol Phys 62(4):1224–1231

    Article  Google Scholar 

  31. Zhao S, Robertson DD, Wang G, Whiting B, Bae KT (2000) X-ray CT metal artifact reduction using wavelets: An application for imaging total hip prostheses. IEEE Trans Med Imaging 19:1238–1247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Azhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, J.A., Israel, O., Frenkel, A. et al. The reduction of artifacts due to metal hip implants in CT-attenuation corrected PET images from hybrid PET/CT scanners. Med Bio Eng Comput 45, 553–562 (2007). https://doi.org/10.1007/s11517-007-0188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0188-8

Keywords

Navigation