Skip to main content

Advertisement

Log in

Assessment of cerebrospinal fluid outflow resistance

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The brain and the spinal cord are contained in a cavity and are surrounded by cerebrospinal fluid (CSF), which provides physical support for the brain and a cushion against external pressure. Hydrocephalus is a disease, associated with disturbances in the CSF dynamics, which can be surgically treated by inserting a shunt or third ventriculostomy. This review describes the physiological background, modeling and mathematics, and the investigational methods for determining the CSF dynamic properties, with specific focus on the CSF outflow resistance, R out. A model of the cerebrospinal fluid dynamic system, with a pressure-independent R out, a pressure-dependent compliance and a constant formation rate of CSF is widely accepted. Using mathematical expressions calculated from the model, along with active infusion of artificial CSF and observation of corresponding change in ICP allows measurements of CSF dynamics. Distinction between normal pressure hydrocephalus and differential diagnoses, prediction of clinical response to shunting and the possibility of assessment of shunt function in vivo are the three most important applications of infusion studies in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agren_Wilsson A, Roslin M, Eklund A, Koskinen LO, Bergenheim AT, Malm J (2003) Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 74:217–21

    Article  Google Scholar 

  2. Agren-Wilsson A, Eklund A, Koskinen LO, Bergenheim AT, Malm J (2005) Brain energy metabolism and intracranial pressure in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 76:1088–93

    Article  Google Scholar 

  3. Albeck MJ, Borgesen SE, Gjerris F, Schmidt JF, Sorensen PS (1991) Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects. J Neurosurg 74:597–600

    Google Scholar 

  4. Alperin N, Mazda M, Lichtor T, Lee SH (2006) From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies. Curr Med Imaging Rev 2:117–129

    Article  Google Scholar 

  5. Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T (2000) MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 217:877–885

    Google Scholar 

  6. Andersson N, Malm J, Backlund T, Eklund A (2005) Assessment of cerebrospinal fluid outflow conductance using constant-pressure infusion-a method with real time estimation of reliability. Physiol Meas 26:1137–1148

    Article  Google Scholar 

  7. Avezaat CJ, Eijndhoven JHM (1984) Cerebrospinal fluid pulse pressure and craniospinal dynamics. Doctoral thesis, Academic Hospital of Rotterdam and Erasmus University

  8. Bech RA, Waldemar G, Gjerris F, Klinken L, Juhler M (1999) Shunting effects in patients with idiopathic normal pressure hydrocephalus; correlation with cerebral and leptomeningeal biopsy findings. Acta Neurochir (Wien) 141:633–639

    Article  Google Scholar 

  9. Bech-Azeddine R, Gjerris F, Waldemar G, Czosnyka M, Juhler M (2005) Intraventricular or lumbar infusion test in adult communicating hydrocephalus? Practical consequences and clinical outcome of shunt operation. Acta Neurochir (Wien) 147:1027–1036

    Article  Google Scholar 

  10. Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA, Avezaat CJ, De_Jong DA, Gooskens RH, Hermans J (1997) Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687–693

    Google Scholar 

  11. Borgesen SE, Albeck MJ, Gjerris F, Czosnyka M, Laniewski P (1992) Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow. Acta Neurochir (Wien) 119:12–16

    Article  Google Scholar 

  12. Borgesen SE, Gjerris F (1982) The predictive value of conductance to outflow of CSF in normal pressure hydrocephalus. Brain 105:65–86

    Article  Google Scholar 

  13. Borgesen SE, Gjerris F, Srensen SC (1978) The resistance to cerebrospinal fluid absorption in humans. A method of evaluation by lumbo-ventricular perfusion, with particular reference to normal pressure hydrocephalus. Acta Neurol Scand 57:88–96

    Google Scholar 

  14. Chapman PH, Cosman ER, Arnold MA (1990) The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study. Neurosurgery 26:181–189

    Article  Google Scholar 

  15. Cobb WS, Burns JM, Kercher KW, Matthews BD, James Norton H, Todd Heniford B (2005) Normal intraabdominal pressure in healthy adults. J Surg Res 129:231–235

    Article  Google Scholar 

  16. Czosnyka M, Batorski L, Laniewski P, Maksymowicz W, Koszewski W, Zaworski W (1990) A computer system for the identification of the cerebrospinal compensatory model. Acta Neurochir 105:112–116

    Article  Google Scholar 

  17. Czosnyka M, Batorski L, Roszkowski M, Tomaszewski J, Wocjan J, Walencik A, Zabolotny W (1993) Cerebrospinal compensation in hydrocephalic children. Childs Nerv Syst 9:17–22

    Article  Google Scholar 

  18. Czosnyka M, Czosnyka Z, Momjian S, Pickard JD (2004) Cerebrospinal fluid dynamics. Physiol Meas 25:R51–R76

    Article  Google Scholar 

  19. Czosnyka M, Czosnyka Z, Whitehouse H, Pickard JD (1997) Hydrodynamic properties of hydrocephalus shunts: United Kingdom shunt evaluation laboratory. J Neurol Neurosurg Psychiatry 62:43–50

    Google Scholar 

  20. Czosnyka M, Whitehouse H, Smielewski P, Simac S, Pickard JD (1996) Testing of cerebrospinal compensatory reserve in shunted and non-shunted patients: a guide to interpretation based on an observational study. J Neurol Neurosurg Psychiatry 60:549–558

    Google Scholar 

  21. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (1998) Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42, 327–333; discussion 333–334

    Google Scholar 

  22. Czosnyka ZH, Czosnyka M, Pickard JD (2002) Shunt testing in vivo: a method based on the data from the UK shunt evaluation laboratory 81:27–30

  23. Czosnyka ZH, Czosnyka M, Whitfield PC, Donovan T, Pickard JD (2002) Cerebral autoregulation among patients with symptoms of hydrocephalus. Neurosurgery 50:526–532; discussion 532–533

    Google Scholar 

  24. Davson H, Welch K, Segal MB (1987) The physiology and pathophysiology of cerebrospinal fluid. Churchill Livingstone, New York

    Google Scholar 

  25. Eide PK (2005) Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals. Pediatr Neurosurg 41:122–130

    Article  Google Scholar 

  26. Eklund A, Lundkvist B, Koskinen LOD, Malm J (2004) Infusion technique can be used to distinguish between dysfunction of a hydrocephalus shunt system and a progressive dementia. Med Biol Eng Comput 42:644–649

    Article  Google Scholar 

  27. Ekstedt J (1977) CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry 40:105–119

    Google Scholar 

  28. Ekstedt J (1978) CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry 41:345–353

    Google Scholar 

  29. Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system, 2nd edn. Saunders Company, Philadelphia

    Google Scholar 

  30. Friden H, Ekstedt J (1982) Instrumentation for cerebrospinal fluid hydrodynamic studies in man. Med Biol Eng Comput 20:167–180

    Article  Google Scholar 

  31. Fung YC (1993) Biomechanics mechanical properties of living tissues. 2nd edn. Springer, Heidelberg

    Google Scholar 

  32. Gjerris F, Borgesen SE (1992) Patophysiology of CSF circulation. In: Crockard A, Hayward A, Hoff JT (eds) The scientific basis of clinical practice. Neurosurgery. Blackwell, Oxford, pp 146–174

    Google Scholar 

  33. Gjerris F, Borgesen SE, Schmidt K, Sorensen PS, Gyring J (1986) Measurement of conductance to cerebrospinal fluid outflow by the steady-state perfusion method in patients with normal or increased intracranial pressure. In: Miller JD, Teasdale JO, Rowan SL (eds) Intracranial presssure VI. Springer, Heidelberg, pp 411–416

    Google Scholar 

  34. Hakim S, Adams RD (1965) The special clinical problem symptomatic hydrocephalus with “normal” cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2:117–126

    Article  Google Scholar 

  35. Hayashi M, Handa Y, Kobayashi H, Kawano H, Ishii H, Hirose S (1991) Plateau-wave phenomenon (I). Correlation between the appearance of plateau waves and CSF circulation in patients with intracranial hypertension. Brain 114(Pt 6):2681–2691

    Article  Google Scholar 

  36. Iddon JL, Pickard JD, Cross JJ, Griffiths PD, Czosnyka M, Sahakian BJ (1999) Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer’s disease: a pilot study. J Neurol Neurosurg Psychiatry 67:723–732

    Google Scholar 

  37. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2

    Article  Google Scholar 

  38. Kahlon B, Sundbarg G, Rehncrona S (2002) Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 73:721–726

    Article  Google Scholar 

  39. Kasprowicz M, Czosnyka Z, Czosnyka M, Momjian S, Juniewicz H, Pickard JD (2004) Slight elevation of baseline intracranial pressure after fluid infusion into CSF space in patients with hydrocephalus. Neurol Res 26:628–631

    Article  Google Scholar 

  40. Katzman R, Hussey F (1970) A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20:534–544

    Google Scholar 

  41. Kosteljanetz M (1985) Resistance to outflow of cerebrospinal fluid determined by bolus injection technique and constant rate steady state infusion in humans. Neurosurgery 16:336–340

    Article  Google Scholar 

  42. Loth F, Yardimci MA, Alperin N (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123:71–9

    Article  Google Scholar 

  43. Lundkvist B, Eklund A, Koskinen LOD, Malm J (2003) An adjustable CSF shunt. Advices for clinical use. Acta Neurol Scand 108:38–42

    Article  Google Scholar 

  44. Lundkvist B, Eklund A, Kristensen B, Fagerlund M, Koskinen LO, Malm J (2001) Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study. J Neurosurg 94:750–756

    Google Scholar 

  45. Magendie F (1842) Recherches physiologiques et cliniques sur le liquide céphalorachidien ou cérébro-spinal. Librairie Medicale de Mequigenon-Marvis Files, Paris

  46. Maksymowicz W, Czosnyka M, Koszewski W, Szymanska A, Traczewski W (1989) The role of cerebrospinal compensatory parameters in the estimation of functioning of implanted shunt system in patients with communicating hydrocephalus (preliminary report). Acta Neurochir (Wien) 101:112–116

    Article  Google Scholar 

  47. Malm J, Eklund A (2006) Idiopatic normal pressure hydrocephalus. Pract Neurol 6:14–27

    Article  Google Scholar 

  48. Malm J, Kristensen B, Fagerlund M, Koskinen LO, Ekstedt J (1995) Cerebrospinal fluid shunt dynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 58:715–723

    Google Scholar 

  49. Malm J, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J (1995) The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. Arch Neurol 52:783–789

    Google Scholar 

  50. Malm J, Lundkvist B, Eklund A, Koskinen LO, Kristensen B (2004) CSF outflow resistance as predictor of shunt function. A long-term study. Acta Neurol Scand 110:154–160

    Article  Google Scholar 

  51. Marmarou A, Shulman K, Rosende RM (1978) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48:332–344

    Google Scholar 

  52. Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, Dunbar J (2005) Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg 102:987–997

    Google Scholar 

  53. Mccomb JG, Davson H, Hyman S, Weiss MH (1982) Cerebrospinal fluid drainage as influenced by ventricular pressure in the rabbit. J Neurosurg 56:790–797

    Google Scholar 

  54. Meier U, Kiefer M, Sprung C (2003) Normal-pressure hydrocephalus—pathology, pathophysiology, diagnostics, therapeutics and clinical course. PVV Science Publications, Ratingen

    Google Scholar 

  55. Meier U, Zeilinger FS, Kintzel D (1999) Diagnostic in normal pressure hydrocephalus: A mathematical model for determination of the ICP-dependent resistance and compliance. Acta Neurochir (Wien) 141:941–947; discussion 947–948

    Google Scholar 

  56. Momjian S, Czosnyka Z, Czosnyka M, Pickard JD (2004) Link between vasogenic waves of intracranial pressure and cerebrospinal fluid outflow resistance in normal pressure hydrocephalus. Br J Neurosurg 18:56–61

    Article  Google Scholar 

  57. Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD (2004) Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 127:965–972

    Article  Google Scholar 

  58. Piper I, Dunn L, Contant C, Yau Y, Whittle I, Citerio G, Kiening K, Schvning W, Ng S, Poon W, Enblad P, Nilsson P (2000) Multi-centre assessment of the Spiegelberg compliance monitor: preliminary results. Acta Neurochir Suppl 76:491–494

    Google Scholar 

  59. Shapiro K, Marmarou A, Conway E (1983) Comparison of bolus and constant infusion techniques for determining the resistance of the absorption of CSF. In: Ishii S, Nagai H, Brock M (eds) Intracranial pressure V, Springer, Heidelberg

  60. Smielewski P, Czosnyka M, Roszkowski M, Walencik A (1995) Identification of the cerebrospinal compensatory mechanisms via computer-controlled drainage of the cerebrospinal fluid. Childs Nerv Syst 11:297–300

    Article  Google Scholar 

  61. Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelso C (2005) Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry 76:965–970

    Article  Google Scholar 

  62. Sullivan HG, Miller JD, Griffith RL 3rd, Carter W Jr, Rucker S (1979) Bolous versus steady-state infusion for determination of CSF outflow resistance. Ann Neurol 5:228–238

    Article  Google Scholar 

  63. Takeuchi T, Kasahara E, Iwasaki M, Mima T, Mori K (2000) Indications for shunting in patients with idiopathic normal pressure hydrocephalus presenting with dementia and brain atrophy (atypical idiopathic normal pressure hydrocephalus). Neurol Med Chir (Tokyo) 40, 38–46; discussion 46–47

    Google Scholar 

  64. Tans JT, Poortvliet DC (1985) CSF outflow resistance and pressure–volume index determined by steady-state and bolus infusions. Clin Neurol Neurosurg 87:159–165

    Article  Google Scholar 

  65. Taylor R, Czosnyka Z, Czosnyka M, Pickard JD (2002) A laboratory model of testing shunt performance after implantation. Br J Neurosurg 16:30–35

    Article  Google Scholar 

  66. Tsunoda A, Mitsuoka H, Bandai H, Endo T, Arai H, Sato K (2002) Intracranial cerebrospinal fluid measurement studies in suspected idiopathic normal pressure hydrocephalus, secondary normal pressure hydrocephalus, and brain atrophy. J Neurol Neurosurg Psychiatry 73:552–555

    Article  Google Scholar 

  67. Tullberg M, Mansson JE, Fredman P, Lekman A, Blennow K, Ekman R, Rosengren LE, Tisell M, Wikkelso C (2000) CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry 69:74–81

    Article  Google Scholar 

  68. Vanneste J, Van Acker R (1990) Normal pressure hydrocephalus: did publications alter management? J Neurol Neurosurg Psychiatry 53:564–568

    Article  Google Scholar 

  69. Vanneste JA (2000) Diagnosis and management of normal-pressure hydrocephalus. J Neurol 247:5–14

    Article  Google Scholar 

  70. Weller RO, Nicoll JA (2003) Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 25:611–616

    Article  Google Scholar 

  71. Wikkelso C, Andersson H, Blomstrand C, Lindqvist G, Svendsen P (1986) Normal pressure hydrocephalus. Predictive value of the cerebrospinal fluid tap-test. Acta Neurol Scand 73:566–573

    Google Scholar 

  72. Williams MA, Razumovsky AY, Hanley DF (1998) Evaluation of shunt function in patients who are never better, or better than worse after shunt surgery for NPH. Acta Neurochir Suppl 71:368–370

    Google Scholar 

Download references

Acknowledgments

We thank Nina Andersson for assisting with the mathematical derivations. Dr. Czosnyka is on unpaid leave from Warsaw University of Technology, Warsaw, Poland. Dr. Eklund was supported by grant 621-2005-3047 from Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Eklund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eklund, A., Smielewski, P., Chambers, I. et al. Assessment of cerebrospinal fluid outflow resistance. Med Bio Eng Comput 45, 719–735 (2007). https://doi.org/10.1007/s11517-007-0199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0199-5

Keywords

Navigation