Skip to main content

Advertisement

Log in

CSF dynamic analysis of a predictive pulsatility-based infusion test for normal pressure hydrocephalus

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Disturbed cerebrospinal fluid (CSF) dynamics are part of the pathophysiology of normal pressure hydrocephalus (NPH) and can be modified and treated with shunt surgery. This study investigated the contribution of established CSF dynamic parameters to AMPmean, a prognostic variable defined as mean amplitude of cardiac-related intracranial pressure pulsations during 10 min of lumbar constant infusion, with the aim of clarifying the physiological interpretation of the variable. AMPmean and CSF dynamic parameters were determined from infusion tests performed on 18 patients with suspected NPH. Using a mathematical model of CSF dynamics, an expression for AMPmean was derived and the influence of the different parameters was assessed. There was high correlation between modelled and measured AMPmean (r = 0.98, p < 0.01). Outflow resistance and three parameters relating to compliance were identified from the model. Correlation analysis of patient data confirmed the effect of the parameters on AMPmean (Spearman’s ρ = 0.58–0.88, p < 0.05). Simulated variations of ±1 standard deviation (SD) of the parameters resulted in AMPmean changes of 0.6–2.9 SD, with the elastance coefficient showing the strongest influence. Parameters relating to compliance showed the largest contribution to AMPmean, which supports the importance of the compliance aspect of CSF dynamics for the understanding of the pathophysiology of NPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersson K, Sundström N, Malm J, Eklund A (2011) Effect of resting pressure on the estimate of cerebrospinal fluid outflow conductance. Fluids Barriers CNS 8(1):15

    Article  PubMed Central  PubMed  Google Scholar 

  2. Andersson K, Manchester IR, Laurell K, Cesarini K, Malm J, Eklund A (2013) Measurement of CSF dynamics with oscillating pressure infusion. Acta Neurol Scand 128(1):17–23

    Google Scholar 

  3. Andersson N, Malm J, Bäcklund T, Eklund A (2005) Assessment of cerebrospinal fluid outflow conductance using constant-pressure infusion–a method with real time estimation of reliability. Physiol Meas 26:1137–1148

    Article  PubMed  Google Scholar 

  4. Andersson N, Malm J, Eklund A (2008) Dependency of cerebrospinal fluid outflow resistance on intracranial pressure. J Neurosurg 109:918–922

    Article  PubMed  Google Scholar 

  5. Anile C, De Bonis P, Albanese A, Di Chirico A, Mangiola A, Petrella G, Santini P (2010) Selection of patients with idiopathic normal-pressure hydrocephalus for shunt placement: a single-institution experience. J Neurosurg 113(1):64–73

    Article  PubMed  Google Scholar 

  6. Avezaat CJJ, Van Eijndhoven JHM, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42(8):687–700

    Article  CAS  PubMed  Google Scholar 

  7. Avezaat CJJ, Van Eijndhoven JHM (1986) Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien) 79:13–29

    Article  CAS  Google Scholar 

  8. Baledent O, Fin L, Khuoy L, Ambarki K, Gauvin AC, Gondry-Jouet C, Meyer ME (2006) Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. J Magn Reson Imaging 24(5):995–1004

    Article  PubMed  Google Scholar 

  9. Bateman GA (2002) Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology 44:740–748

    Article  CAS  PubMed  Google Scholar 

  10. Bradley WG, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at mr imaging. Neuroradiology 198:523–529

    Google Scholar 

  11. Czosnyka M, Czosnyka Z, Momjian S, Pickard JD (2004) Cerebrospinal fluid dynamics. Physiol Meas 25:R51–R76

    Article  PubMed  Google Scholar 

  12. Czosnyka M, Czosnyka Z, Keong N, Lavinio A, Smielewski P, Momjian S, Schmidt EA, Petrella G, Owler B, Pickard JD (2007) Pulse pressure waveform in hydrocephalus : what it is and what it isn’t. Neurosurg Focus 22:1–7

    Google Scholar 

  13. Davson H (1966) Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev 1966:238–259

  14. Davson H, Hollingsworth G, Segal MB (1970) The mechanism of drainage of the cerebrospinal fluid. Brain 93(4):665–678

    Article  CAS  PubMed  Google Scholar 

  15. Davson H, Domer FR, Hollingsworth JR (1973) The mechanism of drainage of the cerebrospinal fluid. Brain 96(2):329–336

    Article  CAS  PubMed  Google Scholar 

  16. Eide PK, Brean A (2010) Cerebrospinal fluid pulse pressure amplitude during lumbar infusion in idiopathic normal pressure hydrocephalus can predict response to shunting. Cerebrospinal Fluid Res 7:1–11

    Article  Google Scholar 

  17. Eide PK, Sorteberg W (2010) Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of 214 patients. Neurosurgery 66:80–91

    Article  PubMed  Google Scholar 

  18. Eklund A, Smielewski P, Chambers I, Alperin N, Malm J, Czosnyka M, Marmarou A (2007) Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput 45:719–735

    Article  PubMed  Google Scholar 

  19. Greitz D (2004) Radiological assessment of hydrocephalus : new theories and implications for therapy. Neurosurg Rev 27:145–165

    PubMed  Google Scholar 

  20. Hamilton R, Baldwin K, Fuller J, Vespa P, Hu X, Bergsneider M (2012) Intracranial pressure pulse waveform correlates with aqueductal cerebrospinal fluid stroke volume. J Appl Physiol 113(10):1560–1566

    Article  PubMed  Google Scholar 

  21. Lenfeldt N, Andersson N, Ågren-Wilson A, Bergenheim AT, Koskinen L-OD, Eklund A, Malm J (2004) Cerebrospinal fluid pulse pressure method: a possible substitute for the examination of B waves. J Neurosurg 101:944–950

    Article  PubMed  Google Scholar 

  22. Linninger AA, Xenos M, Sweetman B, Ponkshe S, Guo X, Penn RD (2009) A mathematical model of blood, cerebrospinal fluid and brain dynamics. J Math Biol 59:729–759

    Article  PubMed  Google Scholar 

  23. Madsen JR, Egnor MR, Zou R (2006) Cerebrospinal fluid pulsatility and hydrocephalus: the fourth circulation. Clin Neurosurg 53:48–52

    PubMed  Google Scholar 

  24. Malm J, Sundström N, Cesarini KG, Edsbagge M, Kristensen B, Leijon G, Eklund A (2012) Implementation of a new CSF dynamic device: a multicenter feasibility study in 562 patients. Acta Neurol Scand 125(3):199–205

    Google Scholar 

  25. Marmarou A, Shulman K, Rosende RM (1978) A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 48:332–344

    Article  CAS  PubMed  Google Scholar 

  26. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black P (2005) The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 57:S17–S28

    Article  PubMed  Google Scholar 

  27. Miyati T, Mase M, Kasai H, Hara M, Yamada K, Shibamoto Y, Soellinger M, Baltes C, Luechinger R (2007) Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 26(2):274–278

    Article  PubMed  Google Scholar 

  28. Mokri B (2001) The Monro–Kellie hypothesis: applications in CSF volume depletion. Neurology 56(12):1746–1748

    Article  CAS  PubMed  Google Scholar 

  29. Oresković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64:241–262

    Article  PubMed  Google Scholar 

  30. Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9

    Article  PubMed Central  PubMed  Google Scholar 

  31. Qvarlander S, Malm J, Eklund A (2010) The pulsatility curve—the relationship between mean intracranial pressure and pulsation amplitude. Physiol Meas 31(11):1517–1528

    Article  PubMed  Google Scholar 

  32. Qvarlander S, Lundkvist B, Koskinen LO, Malm J, Eklund A (2013) Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 84(7):735–741

    Article  PubMed  Google Scholar 

  33. Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56:1695–1716

    Article  CAS  PubMed  Google Scholar 

  34. Ursino M (1988) A mathematical study of human intracranial hydrodynamics part 1—the cerebrospinal fluid pulse pressure. Ann Biomed Eng 16:379–401

    Article  CAS  PubMed  Google Scholar 

  35. Wåhlin A, Ambarki K, Birgander R, Alperin N, Malm J, Eklund A (2010) Assessment of craniospinal pressure-volume indices. AJNR Am J Neuroradiol 31(9):1645–1650

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was financed by the Swedish Research Council, VINNOVA, and the Swedish Foundation for Strategic Research through their common initiative: “Biomedical engineering for improved health”; and by the European Union through ERDF: Objective 2, Northern Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Qvarlander.

Appendix

Appendix

The volume change of CSF over time can be written as:

$$\frac{{{\text{d}}V}}{{{\text{d}}t}} = I_{\text{f}} - I_{\text{a}} + I_{\text{ext}} .$$
(15)

I f and I a are equal at ICPr, and thus, with the assumption that formation is pressure independent [4], I f can be described using Eq. (4):

$$I_{\text{f}} = \frac{{\left( {{\text{ICP}}_{\text{r}} - P_{\text{d}} } \right)}}{{R_{\text{out}} }}.$$
(16)

Equation (15) can then be rewritten as:

$$\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{{\left( {{\text{ICP}}_{\text{r}} - P_{\text{d}} } \right)}}{{R_{\text{out}} }} - \frac{{\left( {{\text{ICP}} - P_{\text{d}} } \right)}}{{R_{\text{out}} }} + I_{\text{ext}} = \frac{{\left( {{\text{ICP}}_{\text{r}} - {\text{ICP}}} \right)}}{{R_{\text{out}} }} + I_{\text{ext}} .$$
(17)

The derivative of ICP with respect to time [Eq. (3)] can thus be expressed as:

$$\frac{\text{dICP}}{{{\text{d}}t}} = \frac{{k\left( {{\text{ICP}} - P_{0} } \right)}}{{R_{\text{out}} }}\left( {{\text{ICP}}_{\text{r}} - {\text{ICP}} + R_{\text{out}} I_{\text{ext}} } \right).$$
(18)

The variable substitution x = 1/(ICP − P 0), or ICP = 1/x + P 0, gives:

$$\frac{\text{dICP}}{{{\text{d}}t}} = \frac{\text{dICP}}{{{\text{d}}x}}\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{ - 1}{{x^{2} }}\frac{{{\text{d}}x}}{{{\text{d}}t}}.$$
(19)

In Eq. (18) this results in:

$$\frac{ - 1}{{x^{2} }}\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{k}{{xR_{\text{out}} }}\left( {{\text{ICP}}_{\text{r}} - \left( {\frac{1}{x} + P_{0} } \right) + R_{\text{out}} I_{\text{ext}} } \right).$$
(20)

Rearranging this equation gives:

$$\frac{{{\text{d}}x}}{{{\text{d}}t}} + \frac{kx}{{R_{\text{out}} }}\left( {{\text{ICP}}_{\text{r}} - P_{0} + R_{\text{out}} I_{\text{ext}} } \right) = \frac{k}{{R_{\text{out}} }}.$$
(21)

Equation (21) can be solved using the integrating factor (IF) method, where

$${\text{IF}}\frac{{{\text{d}}x}}{{{\text{d}}t}}{\text{ + IF}}\frac{kx}{{R_{\text{out}} }}\left( {{\text{ICP}}_{\text{r}} - P_{0} + R_{\text{out}} I_{\text{ext}} } \right) = {\text{IF}}\frac{k}{{R_{\text{out}} }}$$
(22)

with the appropriate IF results in:

$$\frac{\text{d}}{{{\text{d}}t}}\left( {{\text{IF}}x} \right) = {\text{IF}}\frac{k}{{R_{\text{out}} }}$$
(23)

and thus:

$$x = \frac{{\int {{\text{IF}}\frac{k}{{R_{\text{out}} }}{\text{d}}t + A} }}{\text{IF}}$$
(24)

where A is a constant. In this case, the appropriate IF is:

$${\text{IF}} = \exp \left( {\int {\frac{{k\left( {{\text{ICP}}_{\text{r}} - P_{0} + R_{\text{out}} I_{\text{ext}} } \right)}}{{R_{\text{out}} }}} {\text{d}}t} \right) = {\text{e}}^{{tk\left( {I_{\text{ext}} + {{\left( {{\text{ICP}}_{\text{r}} - P_{0} } \right)} \mathord{\left/ {\vphantom {{\left( {{\text{ICP}}_{\text{r}} - P_{0} } \right)} {R_{\text{out}} }}} \right. \kern-0pt} {R_{\text{out}} }}} \right)}} .$$
(25)

For constant infusion (I ext = constant) starting at ICPstart (i.e., ICP(0) = ICPstart), the following equation for ICP as a function of time is then derived:

$${\text{ICP}}(t) = \frac{{\left( {R_{\text{out}} I_{\text{ext}} + {\text{ICP}}_{\text{r}} - P_{0} } \right)\left( {{\text{ICP}}_{\text{start}} - P_{0} } \right)}}{{{\text{ICP}}_{\text{start}} - P_{0} + \left( {R_{\text{out}} I_{\text{ext}} + {\text{ICP}}_{\text{r}} - {\text{ICP}}_{\text{start}} } \right)e^{{ - tk\left( {{{I_{\text{ext}} + \left( {{\text{ICP}}_{\text{r}} - P_{0} } \right)} \mathord{\left/ {\vphantom {{I_{\text{ext}} + \left( {{\text{ICP}}_{\text{r}} - P_{0} } \right)} {R_{\text{out}} }}} \right. \kern-0pt} {R_{\text{out}} }}} \right)}} }} + P_{0} .$$
(26)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qvarlander, S., Malm, J. & Eklund, A. CSF dynamic analysis of a predictive pulsatility-based infusion test for normal pressure hydrocephalus. Med Biol Eng Comput 52, 75–85 (2014). https://doi.org/10.1007/s11517-013-1110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1110-1

Keywords

Navigation