Skip to main content

Advertisement

Log in

Transverse dural sinuses: incidence of anatomical variants and flow artefacts with 2D time-of-flight MR venography at 1 Tesla

Seni durali trasversi: incidenza di varianti anatomiche e artefatti di flusso con venografia RM 2D-ToF ad 1 Tesla

  • Neuroradiology/Neuroradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

This study sought to identify imaging criteria useful in discriminating anatomical variants from thrombosis of the posterior intracranial venous system.

Materials and methods

A total of 102 patients underwent coronal unenhanced two-dimensional time-of-flight (2D ToF) magnetic resonance (MR) venography. Transverse sinus (TS) calibre and asymmetry were considered. Oval (O-FG) and linear (L-FG) flow gaps were recorded. Several slices of the 2D ToF sequence were applied perpendicularly to the TS within each FG to avoid in-plane saturation.

Results

Mean calibre of the right TS was significantly greater than the contralateral sinus (6.5 mm±1.84 vs 5.1 mm±1.72). Right and left dominance was observed in 61% and 17% of cases, respectively. The mean right-left TS diameter was 5.77 mm. Among 204 TS, 44 L-FG and 42 O-FG were observed. Partial L-FG (<2/3 of TS) never involved the distal TS. No L-FG was observed in a dominant TS. Supplementary sagittal 2D ToF images disclosed blood flow in all but two L-FGs. O-FGs were mostly observed laterally (91%).

Conclusions

L-FGs in a dominant TS, partial L-FGs in the distal part or O-FG in the medial part of any TS, a left-right mean diameter <3 mm and absence of flow even in ToF images perpendicular to the direction of blood flow should raise the suspicion of sinus pathology.

Riassunto

Obiettivo

Scopo di questo lavoro è stato identificare i criteri neuroradiologici per discriminare le varianti anatomiche dalle trombosi dei seni venosi della fossa cranica posteriore.

Materiali e metodi

Centodue pazienti sono stati sottoposti ad angio-risonanza magnetica (RM) 2D in tempo di volo (ToF) acquisita mediante sezioni coronali senza mezzo di contrasto. Sono stati valutati calibro ed asimmetria dei seni trasversi (ST). I difetti di riempimento sono stati classificati come ovalari (DO) e lineari (DL). Per evitare la saturazione degli spin sono state effettuate alcune sezioni 2D-ToF perpendicolarmente ad ogni difetto di riempimento.

Risultati

Il diametro del ST destro è risultato significativamente più grande del controlaterale (6,5 mm±1,84 vs 5,1 mm±1,72); il diametro medio dei ST destro-sinistro è risultato di 5,77 mm. Il ST è risultato di calibro dominante a destra nel 61% ed a sinistra nel 17% dei casi. Dei 204 ST studiati, 44 presentavano DL e 42 DO. La parte distale dei ST non ha mai presentato DL parziali (meno di 2/3 del ST). Nessun DL è stato osservato nei ST dominanti. Le sezioni sagittali 2D-ToF supplementari hanno dimostrato la pervietà dei ST in tutti i DL, tranne che in due casi. I DO sono stati riscontrati nel 91% dei casi nella porzione laterale dei ST.

Conclusioni

Si dovrebbe sospettare una patologia a carico dei seni trasversi ogniqualvolta si riscontri: DL in un ST dominante; DL parziali nella parte distale del ST; DO nella parte mediale del ST; diametro medio dei ST inferiore a 3 mm; assenza di flusso ematico anche nelle sequenze 2D-ToF perpendicolari alla direzione di flusso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Higgins JN, Gillard JH, Owler BK et al (2004) MR venography in idiopathic intracranial hypertension: unappreciated and misunderstood. J Neurol Neurosurg Psychiatry 75:621–625

    Article  CAS  PubMed  Google Scholar 

  2. Kantarci M, Dane S, Gumustekin K et al (2005) Relation between intraocular pressure and size of transverse sinuses. Neuroradiology 47:46–50

    Article  PubMed  Google Scholar 

  3. Berroir S, Grabli D, Heran F et al (2004) Cerebral sinus venous thrombosis in two patients with spontaneous intracranial hypotension. Cerebrovasc Dis 17:9–12

    Article  PubMed  Google Scholar 

  4. Majoie CB, van Straten M, Venema HW et al (2004) Multisection CT venography of the dural sinuses and cerebral veins by using matched mask bone elimination. AJNR Am J Neuroradiol 25:787–791

    PubMed  Google Scholar 

  5. Nael K, Fenchel M, Salamon N et al (2006) Three-dimensional cerebral contrast-enhanced magnetic resonance venography at 3.0 Tesla: initial results using highly accelerated parallel acquisition. Invest Radiol 41:763–768

    Article  PubMed  Google Scholar 

  6. Rollins N, Ison C, Reyes T et al (2005) Cerebral MR venography in children: comparison of 2 time-of-flight and gadolinium-enhanced 3D gradient-echo techniques. Radiology 235:1011–1017

    Article  PubMed  Google Scholar 

  7. Liang L, Korogi Y, Sugahara T et al (2001) Evaluation of the intracranial dural sinuses with a 3D Contrastenhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 22:481–492

    CAS  PubMed  Google Scholar 

  8. Liauw L, Van Buchem MA, Spilt A et al (2000) MR angiography of the intracranial venous system. Radiology 214:678–682

    CAS  PubMed  Google Scholar 

  9. Baikov DE, Mufazalov FF, Gerasimova LP (2007) Magneto-resonance tomography in evaluation variations of development of large-scale conjugated sinus of the posterior cranium fossa and interior jugular veins. Medical Journal of Bashkortostan 2:73–75

    Google Scholar 

  10. Alper F, Kantarci M, Dane S (2004) Importance of anatomical asymmetries of transverse sinuses: An MR venographic study. Cerebrovasc Dis 18:236–239

    Article  PubMed  Google Scholar 

  11. Ayanzen RH, Bird CR, Keller PJ (2001) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol 22:481–492

    Google Scholar 

  12. Widjaja E, Griffiths PD (2004) Intracranial MR venography in children: normal anatomy and variations. AJNR Am J Neuroradiol 25:1557–1562

    CAS  PubMed  Google Scholar 

  13. Durgun B, Ilgit ET, Cizmeli MQ (1993) Evaluation by angiography of the lateral dominance of the drainage of the dural venous sinuses. Surg Radiol Anat 15:125–130

    Article  CAS  PubMed  Google Scholar 

  14. Surendrababu NRS, Subathira, Livingstone RS (2006) Variation in the cerebral venous anatomy and pitfalls in the diagnosis of cerebral venous sinus thrombosis: low field MR experience. Indian Journal of Medical Sciences 4:135–142

    Article  Google Scholar 

  15. Rhoton AL (2000) Jugular foramen. Neurosurgery 47:267–285

    Article  Google Scholar 

  16. Gailloud P, Muster M, Khaw N et al (2001) Anatomic relationship between arachnoid granulations in the transverse sinus and the termination of the vein of Labbé: an angiographic study. Neuroradiology 43:139–143

    Article  CAS  PubMed  Google Scholar 

  17. Koshikawa T, Naganawa S, Fukatsu H (2000) Arachnoid granulations on highresolution MR images and diffusion-weighted MR images: normal appearance and frequency. Radiat Med 18:187–191

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manara, R., Mardari, R., Ermani, M. et al. Transverse dural sinuses: incidence of anatomical variants and flow artefacts with 2D time-of-flight MR venography at 1 Tesla. Radiol med 115, 326–338 (2010). https://doi.org/10.1007/s11547-010-0480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-010-0480-9

Keywords

Parole chiave

Navigation