Skip to main content

Advertisement

Log in

Calibration of cone beam CT using relative attenuation ratio for quantitative assessment of bone density: a small animal study

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose   Cone beam computed tomography (CBCT) has the disadvantage of providing non-quantitative results for bone density determination. The aim of this study is to calibrate CBCT results by using an internal reference (such as muscle) for quantitatively assessing bone density.

Methods We developed a new method using the relative attenuation ratio between two nearby materials (such as bone and muscle) for systemic error correction in CBCT that depends on the relative object position in the image volume. Phantom calibration was performed to calculate the acquired attenuation ratio in Hounsfield units (HU), comparable to the results from clinical multislice spiral computed tomography (MSCT). In addition, a small animal study with an osteoporotic rat model was evaluated to show the feasibility of this presented method to quantitatively assess bone density using a CBCT system.

Results The phantom study results showed that the calibration process successfully corrected the systemic inaccuracy from CBCT, and the calibrated HU values agreed with the values measured from MSCT. In the small animal study, the quantitative bone densities assessed from the calibrated CBCT results were consistent with the results from MSCT data.

Conclusion A practical method to quantitatively estimate attenuation (HU) values for bone tissues from CBCT scans that are comparable to MSCT scans is proposed. The method may improve the quantification ability of CBCT scanning without any additional hardware requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bäuerle T, Hilbig H, Bartling S, Kiessling F, Kersten A, Schmitt-Gräff A, Kauczor H, Delorme S, Berger M (2008) Bevacizumab inhibits breast cancer-induced osteolysis, surrounding soft tissue metastasis, and angiogenesis in rats as visualized by VCT and MRI. Neoplasia (New York, NY) 10(5):511

  2. Bäuerle T, Bartling S, Berger M, Schmitt-Gräff A, Hilbig H, Kauczor H, Delorme S (2010a) Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur J Radiol 73(2):280–287

    Google Scholar 

  3. Bäuerle T, Merz M, Komljenovic D, Zwick S, Semmler W (2010b) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16(12):3215

    Article  PubMed  Google Scholar 

  4. Bäuerle T, Komljenovic D, Merz M, Berger M, Goodman S,Semmler W (2011) Cilengitide inhibits progression of experimental breast cancer bone metastases as imaged noninvasively using VCT, MRI and DCE-MRI in a longitudinal in vivo study. Int J Cancer 128(10):2453–2462

    Google Scholar 

  5. Chindasombatjaroen J, Kakimoto N, Shimamoto H, Murakami S, Furukawa S (2011) Correlation between pixel values in a cone-beam computed tomographic scanner and the computed tomographic values in a multidetector row computed tomographic scanner. J Comput Assist Tomogr 35(5):662

    Google Scholar 

  6. Cho P, Johnson R, Griffin T (1995) Cone-beam CT for radiotherapy applications. Phys Med Biol 40:1863

    Article  PubMed  CAS  Google Scholar 

  7. Endo M, Tsunoo T, Nakamori N, Yoshida K (2001) Effect of scattered radiation on image noise in cone beam CT. Med Phys 28:469

    Article  PubMed  CAS  Google Scholar 

  8. Goodpaster B, Kelley D, Thaete F, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89(1): 104–110

    Google Scholar 

  9. Greschus S, Kiessling F, Lichy M, Moll J, Mueller M, Savai R, Rose F, Ruppert C, Günther A, Luecke M et al (2005) Potential applications of flat-panel volumetric CT in morphologic and functional small animal imaging. Neoplasia (New York, NY) 7(8):730

  10. Hashimoto K, Arai Y, Iwai K, Araki M, Kawashima S, Terakado M et al (2003) A comparison of a new limited cone beam computed tomography machine for dental use with a multidetector row helical CT machine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95(3):371

    Article  PubMed  Google Scholar 

  11. Heiss C, Govindarajan P, Schlewitz G, Hemdan N, Schliefke N, Alt V, Thormann U, Lips K, Wenisch S, Langheinrich A et al (2012) Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA. Med Sci Monit Int Med J Exp Clin Res 18(6):BR199

    Google Scholar 

  12. Hohlweg-Majert B, Metzger M, Kummer T, Schulze D (2011) Morphometric analysis-Cone beam computed tomography to predict bone quality and quantity. J Cranio-Maxillofac Surg 39(5):330–334

    Article  CAS  Google Scholar 

  13. Kachelrieß M, Sourbelle K, Kalender W (2006) Empirical cupping correction: a first-order raw data precorrection for cone-beam computed tomography. Med Phys 33:1269

    Article  PubMed  Google Scholar 

  14. Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais R (2007) Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(6): 829–836

    Google Scholar 

  15. Kröpil P, Hakimi A, Jungbluth P, Riegger C, Rubbert C, Miese F, Lanzman R, Wild M, Schek A, Scherer A et al (2012) Cone beam CT in assessment of tibial bone defect healing: an animal study. Acad Radiol 19(3):320–325

    Google Scholar 

  16. Létourneau D, Wong J, Oldham M, Gulam M, Watt L, Jaffray D, Siewerdsen J, Martinez A (2005) Cone-beam-CT guided radiation therapy: technical implementation. Radiother Oncol 75(3):279–286

    Article  PubMed  Google Scholar 

  17. Liu Y, Cao L, Hillengass J, Delorme S, Schlewitz G, Schnettler R, Semmler W, Heiß C, Bäuerle T (2012) Quantitative assessment of microcirculation and diffusion in the bone marrow of osteoporotic rats using VCT, DCE-MRI, DW-MRI and histology. Acta Radiol. doi:10.1258/ar.2012.120508

  18. Mah P, Reeves T, McDavid W (2010) Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol 39(6):323–335

    Article  PubMed  CAS  Google Scholar 

  19. Mozzo P, Procacci C, Tacconi A (1998) A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 8(9):1558–1564

    Article  PubMed  CAS  Google Scholar 

  20. Naitoh M, Hirukawa A, Katsumata A, Ariji E (2010) Prospective study to estimate mandibular cancellous bone density using large-volume cone-beam computed tomography. Clin Oral Implant Res 21(12):1309–1313

    Article  Google Scholar 

  21. Paulus M, Gleason S, Kennel S, Hunsicker P, Johnson D (2000) High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia (New York, NY) 2(1–2):62

  22. Rinkel J, Gerfault L, Esteve F, Dinten J (2007) A new method for X-ray scatter correction: first assessment on a cone-beam CT experimental setup. Phys Med Biol 52:4633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG SFB-TR79). The authors would like to thank Karin Leotta for excellent technical assistance during phantom and animal experiments.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liji Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Bäuerle, T., Pan, L. et al. Calibration of cone beam CT using relative attenuation ratio for quantitative assessment of bone density: a small animal study. Int J CARS 8, 733–739 (2013). https://doi.org/10.1007/s11548-012-0803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0803-5

Keywords

Navigation