Skip to main content
Log in

Multiple intracranial aneurysms: a direct hemodynamic comparison between ruptured and unruptured vessel malformations

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Despite numerous studies addressing the rupture risk of intracranial aneurysms that have been published, the assessment thereof still remains challenging. Image-based simulations enable a precise prediction of patient-specific blood flow information. However, those approaches normally consider only small segments of the complete cerebral vasculature.

Methods

To test the validity of the consideration of single aneurysms in one computational setup, domains of the complete anterior and posterior circulations with multiple intracranial aneurysms (MIA) were simulated. Six patients with MIA were investigated, while 3D surfaces of eleven unruptured and six ruptured aneurysms were segmented. The segmentations were used for the determination of morphological parameters and also for image-based blood flow simulations used to characterize the hemodynamic properties of each aneurysm.

Results

In the geometric comparison, neck aspect ratios of unruptured and ruptured aneurysms did not differ significantly. In contrast, size ratios, aspect ratios, surface areas, volumes, and non-sphericity indices were significantly higher in the ruptured cases. The analysis of hemodynamic parameters demonstrated that in each patient, the ruptured aneurysm exhibited the lowest averaged wall shear stresses and highest oscillatory shears. Unstable flow was also detected in ruptured aneurysms based on increased oscillatory velocity.

Conclusion

In this small study involving patients with MIA, different morphologies and flow patterns were observed between ruptured and unruptured aneurysms. The analysis of the hemodynamics in such patients revealed a good agreement with studies that only considered single malformations. Additionally, complex flow patterns are detected in ruptured cases, which require deeper investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonneville F, Sourour N, Biondi A (2006) Intracranial aneurysms: an overview. Neuroimaging Clin N Am 16(3):371–82. doi:10.1016/j.nic.2006.05.001

    Article  PubMed  Google Scholar 

  2. Juvela S (2000) Risk factors for multiple intracranial aneurysms. Stroke 31(2):392–397

    Article  CAS  PubMed  Google Scholar 

  3. Ellamushi HE, Grieve JP, Jager HR, Kitchen ND (2001) Risk factors for the formation of multiple intracranial aneurysms. J Neurosurg 94(5):728–732. doi:10.3171/jns.2001.94.5.0728

    Article  CAS  PubMed  Google Scholar 

  4. Nehls DG, Flom RA, Carter LP, Spetzler RF (1985) Multiple intracranial aneurysms: determining the site of rupture. J Neurosurg 63(3):342–348. doi:10.3171/jns.1985.63.3.0342

    Article  CAS  PubMed  Google Scholar 

  5. van Rooij WJ, Sluzewski M, Beute GN, Nijssen PC (2006) Procedural complications of coiling of ruptured intracranial aneurysms: incidence and risk factors in a consecutive series of 681 patients. AJNR Am J Neuroradiol 27(7):1498–1501

    PubMed  Google Scholar 

  6. Brinjikji W, Lanzino G, Cloft HJ, Siddiqui AH, Boccardi E, Cekirge S, Fiorella D, Hanel R, Jabbour P, Levy E, Lopes D, Lylyk P, Szikora I, Kallmes DF (2016) Risk factors for ischemic complications following pipeline embolization device treatment of intracranial aneurysms: results from the IntrePED study. AJNR Am J Neuroradiol 37(9):1673–1678. doi:10.3174/ajnr.A4807

    Article  CAS  PubMed  Google Scholar 

  7. Ostergaard JR, Hog E (1985) Incidence of multiple intracranial aneurysms. Influence of arterial hypertension and gender. J Neurosurg 63(1):49–55. doi:10.3171/jns.1985.63.1.0049

    Article  CAS  PubMed  Google Scholar 

  8. Inagawa T (1990) Multiple intracranial aneurysms in elderly patients. Acta Neurochir 106(3–4):119–126. doi:10.1007/BF01809453

    Article  CAS  PubMed  Google Scholar 

  9. Qureshi AI, Suarez JI, Parekh PD, Sung G, Geocadin R, Bhardwaj A, Tamargo RJ, Ulatowski JA (1998) Risk factors for multiple intracranial aneurysms. Neurosurgery 43(1):22–6

    Article  CAS  PubMed  Google Scholar 

  10. Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 35(7):1254–1262. doi:10.3174/ajnr.A3558

    Article  CAS  PubMed  Google Scholar 

  11. Xiang J, Tutino VM, Snyder KV, Meng H (2014) CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. AJNR Am J Neuroradiol 35(10):1849–1857. doi:10.3174/ajnr.A3710

    Article  CAS  PubMed  Google Scholar 

  12. Chung B, Cebral JR (2015) CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Ann Biomed Eng 43(1):122–138. doi:10.1007/s10439-014-1093-6

    Article  PubMed  Google Scholar 

  13. Kallmes DF (2012) Point: CFD-computational fluid dynamics or confounding factor dissemination. AJNR Am J Neuroradiol 33(3):395–396. doi:10.3174/ajnr.A2993

    Article  CAS  PubMed  Google Scholar 

  14. Cebral JR, Meng H (2012) Counterpoint: realizing the clinical utility of computational fluid dynamics-closing the gap. AJNR Am J Neuroradiol 33(3):396–398. doi:10.3174/ajnr.A2994

    Article  CAS  PubMed  Google Scholar 

  15. Alastruey J, Parker KH, Peiro J, Byrd SM, Sherwin SJ (2007) Modelling the Circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40(8):1794–1805. doi:10.1016/j.jbiomech.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  16. Jing L, Liu J, Zhang Y, Paliwal N, Meng H, Wang S, Yang X (2016) Analysis of multiple intracranial aneurysms with different outcomes in the same patient after endovascular treatment. World Neurosurg 91:399–408. doi:10.1016/j.wneu.2016.04.072

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sano T, Ishida F, Tsuji M, Furukawa K, Shimosaka S, Suzuki H (2016) Hemodynamic differences between ruptured and unruptured cerebral aneurysms simultaneously existing in the same location: two case reports and proposal of a novel parameter oscillatory velocity index. World Neurosurg. doi:10.1016/j.wneu.2016.12.047

    Google Scholar 

  18. Glaßer S, Berg P, Voß S, Serowy S, Janiga G, Preim B, Beuing O (2016) From imaging to hemodynamics—how reconstruction kernels influence the blood flow predictions in intracranial aneurysms. Curr Dir Biomed Eng 2(1):679–683. doi:10.1515/cdbme-2016-0148

    Google Scholar 

  19. Berg P, Saalfeld S, Voß S, Redel T, Preim B, Janiga G, Beuing O (2017) Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations. J Neurointerv Surg. doi:10.1136/neurintsurg-2017-012996

  20. Janiga G, Berg P, Beuing O, Neugebauer M, Gasteiger R, Preim B, Rose G, Skalej M, Thevenin D (2013) Recommendations for accurate numerical blood flow simulations of stented intracranial aneurysms. Biomed Technik/Biomed Eng 58(3):303–314. doi:10.1515/bmt-2012-0119

    Article  Google Scholar 

  21. Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D (2014) Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng. 136(4) doi:10.1115/1.4026108

  22. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60(5):1218–1231. doi:10.1002/mrm.21778

    Article  CAS  PubMed  Google Scholar 

  23. Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63(2):185–196. doi:10.1227/01.NEU.0000316847.64140.81

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tao C, Li H, You C (2016) Patients with multiple intracranial aneurysms presenting initial worse clinical condition as a result of a ruptured aneurysm. World Neurosurg 96:605. doi:10.1016/j.wneu.2016.07.008

    Article  PubMed  Google Scholar 

  25. Chua MH, Griessenauer CJ, Thomas AJ, Ogilvy CS (2016) In reply to “patients with multiple intracranial aneurysms presenting initial worse clinical condition as a result of a ruptured aneurysm”. World Neurosurg 96:606. doi:10.1016/j.wneu.2016.08.108

    Article  PubMed  Google Scholar 

  26. Jou L, Lee DH, Morsi H, Mawad ME (2008) Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 29(9):1761–1767. doi:10.3174/ajnr.A1180

    Article  PubMed  Google Scholar 

  27. Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152. doi:10.1161/STROKEAHA.110.592923

    Article  PubMed  Google Scholar 

  28. Miura Y, Ishida F, Umeda Y, Tanemura H, Suzuki H, Matsushima S, Shimosaka S, Taki W (2013) Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms. Stroke 44(2):519–521. doi:10.1161/STROKEAHA.112.675306

    Article  PubMed  Google Scholar 

  29. Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 32(2):264–270. doi:10.3174/ajnr.A2274

    Article  CAS  PubMed  Google Scholar 

  30. Janiga G, Berg P, Sugiyama S, Kono K, Steinman DA (2015) The computational fluid dynamics rupture challenge 2013-phase I: prediction of rupture status in intracranial aneurysms. AJNR Am J Neuroradiol 36(3):530–536. doi:10.3174/ajnr.A4157

    Article  CAS  PubMed  Google Scholar 

  31. Berg P, Roloff C, Beuing O, Voss S, Sugiyama S, Aristokleous N, Anayiotos AS, Ashton N, Revell A, Bressloff NW, Brown AG, Chung BJ, Cebral JR, Copelli G, Fu W, Qiao A, Geers AJ, Hodis S, Dragomir-Daescu D, Nordahl E, Bora Suzen Y, Owais Khan M, Valen-Sendstad K, Kono K, Menon PG, Albal PG, Mierka O, Munster R, Morales HG, Bonnefous O, Osman J, Goubergrits L, Pallares J, Cito S, Passalacqua A, Piskin S, Pekkan K, Ramalho S, Marques N, Sanchi S, Schumacher KR, Sturgeon J, Svihlova H, Hron J, Usera G, Mendina M, Xiang J, Meng H, Steinman DA, Janiga G (2015) The computational fluid dynamics rupture challenge 2013-phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng 137(12):121008. doi:10.1115/1.4031794

    Article  PubMed  Google Scholar 

  32. Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am J Neuroradiol 27(8):1703–1709

    CAS  PubMed  Google Scholar 

  33. Jeong Y, Jung Y, Kim M, Eun C, Jang S (2009) Size and location of ruptured intracranial aneurysms. J Korean Neurosurg Soc 45(1):11–15. doi:10.3340/jkns.2009.45.1.11

  34. Li M, Jiang Z, Yu H, Hong T (2013) Size ratio: a morphological factor predictive of the rupture of cerebral aneurysm? Can J Neurol Sci 40(3):366–371

    Article  PubMed  Google Scholar 

  35. Hendrix P, Foreman PM, Starke RM, Harrigan MR, Fisher WSR, Vyas NA, Lipsky RH, Lin M, Walters BC, Tubbs RS, Shoja MM, Pittet J, Mathru M, Griessenauer CJ (2017) Associations of endothelin polymorphisms and aneurysm size at the time of rupture. World Neurosurg 102:253–257. doi:10.1016/j.wneu.2017.03.041

  36. Berg P, Janiga G, Beuing O, Neugebauer M, Thévenin D (2013) Hemodynamics in multiple intracranial aneurysms. The role of shear related to rupture. IJBBB 3(3):177–181. doi:10.7763/IJBBB.2013.V3.191

  37. Neugebauer M, Lawonn K, Beuing O, Berg P, Janiga G, Preim B (2013) AmniVis—a system for qualitative exploration of near-wall hemodynamics in cerebral aneurysms. Comput Graph Forum 32(3):251–260. doi:10.1111/cgf.12112

    Article  Google Scholar 

  38. Oeltze-Jafra S, Cebral JR, Janiga G, Preim B (2016) Cluster analysis of vortical flow in simulations of cerebral aneurysm hemodynamics. IEEE Trans Vis Comput Graph 22(1):757–766. doi:10.1109/TVCG.2015.2467203

    Article  PubMed  Google Scholar 

  39. Voss S, Glasser S, Hoffmann T, Beuing O, Weigand S, Jachau K, Preim B, Thevenin D, Janiga G, Berg P (2016) Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. Comput Math Methods Med 2016:9854539. doi:10.1155/2016/9854539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work is partly funded by the Federal Ministry of Education and Research in Germany within the Research Campus STIMULATE under Grant No. 13GW0095A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Berg.

Ethics declarations

Conflict of interest

The authors P. Berg and O. Beuing declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11548_2017_1643_MOESM1_ESM.mp4

Caption: Time-dependent iso-surface velocity for patient 4 using a velocity threshold of 0.1 m/s. Notice the strong temporal fluctuations within the ruptured AComA aneurysm and the stable flow behavior in the remaining domain. (MP4 Video 945KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, P., Beuing, O. Multiple intracranial aneurysms: a direct hemodynamic comparison between ruptured and unruptured vessel malformations. Int J CARS 13, 83–93 (2018). https://doi.org/10.1007/s11548-017-1643-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1643-0

Keywords

Navigation