Skip to main content
Log in

Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Hydrocephalus is a clinically significant condition which can have devastating consequences if left untreated. Currently available methods for quantifying this condition using CT imaging are unreliable and prone to error. The purpose of this study is to investigate the clinical utility of using convolutional neural networks to calculate ventricular volume and explore limitations.

Methods

A two-dimensional convolutional neural network was designed to perform fully automated ventricular segmentation on CT images. A total of 300 head CTs were collected and used in this exploration. Two hundred were used to train the network, 50 were used for validation, and 50 were used for testing.

Results

Dice scores for the left lateral, right lateral, and third ventricle segmentations were 0.92, 0.92, and 0.79, respectively; the coefficients of determination were r2 = 0.991, r2 = 0.994, and r2 = 0.976; the average volume differences between manual and automated segmentation were 0.821 ml, 0.587 ml, and 0.099 ml.

Conclusion

Two-dimensional convolutional neural network architectures can be used to accurately segment and quantify intracranial ventricle volume. While further refinements are necessary, it is likely these networks could be used as a clinical tool to quantify hydrocephalus accurately and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Smith ER, Amin-Hanjani S (2010) Evaluation and management of elevated intracranial pressure in adults. UpToDate Walth MA UpToDate Retrieved March

  2. American College of Radiology ACR Appropriateness Criteria

  3. Aukland SM, Odberg MD, Gunny R, Chong WKK, Eide GE, Rosendahl K (2008) Assessing ventricular size: is subjective evaluation accurate enough? New MRI-based normative standards for 19-year-olds. Neuroradiology 50:1005–1011. https://doi.org/10.1007/s00234-008-0432-4

    Article  PubMed  Google Scholar 

  4. Reinard K, Basheer A, Phillips S, Snyder A, Agarwal A, Jafari-Khouzani K, Soltanian-Zadeh H, Schultz L, Aho T, Schwalb JM (2015) Simple and reproducible linear measurements to determine ventricular enlargement in adults. Surg Neurol Int 6:59. https://doi.org/10.4103/2152-7806.154777

    Article  PubMed  PubMed Central  Google Scholar 

  5. Toma AK, Holl E, Kitchen ND, Watkins LD (2011) Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 68:939–944. https://doi.org/10.1227/NEU.0b013e318208f5e0

    Article  PubMed  Google Scholar 

  6. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen W, Smith R, Ji S-Y, Ward KR, Najarian K (2009) Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching. BMC Med Inform Decis Mak 9(Suppl 1):S4. https://doi.org/10.1186/1472-6947-9-S1-S4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qian X, Lin Y, Zhao Y, Yue X, Lu B, Wang J (2017) Objective ventricle segmentation in brain ct with ischemic stroke based on anatomical knowledge. BioMed Res. Int. https://www.hindawi.com/journals/bmri/2017/8690892/. Accessed 11 Oct 2018

  9. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP (2018) Deep learning in neuroradiology. Am J Neuroradiol 39:1776–1784. https://doi.org/10.3174/ajnr.A5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, White RD (2017) Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285:923–931. https://doi.org/10.1148/radiol.2017162664

    Article  PubMed  Google Scholar 

  11. Chang PD, Kuoy E, Grinband J, Weinberg BD, Thompson M, Homo R, Chen J, Abcede H, Shafie M, Sugrue L, Filippi CG, Su M-Y, Yu W, Hess C, Chow D (2018) Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. AJNR Am J Neuroradiol 39:1609–1616. https://doi.org/10.3174/ajnr.A5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ibragimov B, Xing L (2017) Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys 44:547–557. https://doi.org/10.1002/mp.12045

    Article  CAS  PubMed  Google Scholar 

  13. Ren X, Xiang L, Nie D, Shao Y, Zhang H, Shen D, Wang Q (2018) Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images. Med Phys 45:2063–2075. https://doi.org/10.1002/mp.12837

    Article  PubMed  Google Scholar 

  14. Zhao C, Carass A, Lee J, He Y, Prince JL (2017) Whole brain segmentation and labeling from CT using synthetic MR images. In: Wang Q, Shi Y, Suk H-I, Suzuki K (eds) Machine learning in medical imaging. Springer, Berlin, pp 291–298

    Chapter  Google Scholar 

  15. Cherukuri V, Ssenyonga P, Warf BC, Kulkarni AV, Monga V, Schiff SJ (2018) Learning based segmentation of CT brain images: application to postoperative hydrocephalic scans. IEEE Trans Biomed Eng 65:1871–1884. https://doi.org/10.1109/TBME.2017.2783305

    Article  PubMed  Google Scholar 

  16. Han M, Quon J, Kim L, Shpanskaya K, Lee E, Kestle J, Lober R, Taylor M, Ramaswamy V, Edwards M et al (2019) One hundred years of innovation: automatic detection of brain ventricular volume using deep learning in a large-scale multi-institutional study (P5. 6-022). AAN Enterprises

  17. D Slicer. https://www.slicer.org/. Accessed 9 Sep 2018

  18. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention—MICCAI 2015. Springer, Cham, pp 234–241

    Google Scholar 

  19. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. arXiv:1606.06650

  20. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: 2017 IEEE international conference on computer vision (ICCV), pp 2980–2988

  21. Girshick R (2015) Fast R-CNN, pp 1440–1448

  22. Milletari F, Ahmadi S-A, Kroll C, Plate A, Rozanski V, Maiostre J, Levin J, Dietrich O, Ertl-Wagner B, Bötzel K, Navab N (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102. https://doi.org/10.1016/j.cviu.2017.04.002

    Article  Google Scholar 

  23. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P-M, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004

    Article  PubMed  Google Scholar 

  24. Chen H, Dou Q, Yu L, Heng P-A (2016) VoxResNet: deep voxelwise residual networks for volumetric brain segmentation

  25. Fritscher K, Raudaschl P, Zaffino P, Spadea MF, Sharp GC, Schubert R (2016) Deep neural networks for fast segmentation of 3D medical images. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention—MICCAI 2016. Springer, Berlin, pp 158–165

    Chapter  Google Scholar 

  26. Kayalibay B, Jensen G, van der Smagt P (2017) CNN-based segmentation of medical imaging data

  27. Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Išgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35:1252–1261. https://doi.org/10.1109/TMI.2016.2548501

    Article  PubMed  Google Scholar 

  28. Reubelt D, Small LC, Hoffmann MHK, Kapapa T, Schmitz BL (2009) MR imaging and quantification of the movement of the lamina terminalis depending on the CSF dynamics. Am J Neuroradiol 30:199–202. https://doi.org/10.3174/ajnr.A1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor J. Huff.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huff, T.J., Ludwig, P.E., Salazar, D. et al. Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume. Int J CARS 14, 1923–1932 (2019). https://doi.org/10.1007/s11548-019-02038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-02038-5

Keywords

Navigation