Skip to main content
Log in

Characteristic signal intensity changes on postmortem magnetic resonance imaging of the brain

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We investigated and identified postmortem changes on magnetic resonance imaging (MRI) of the brain to provide accurate diagnostic guidelines.

Materials and methods

Our subjects were 16 deceased patients (mean age 57 years) who underwent postmortem computed tomography (CT), MRI, and autopsy, the latter of which showed no abnormalities in the brain. The subjects underwent CT and MRI 6–73 h after confirmation of death (mean 26 h), after being kept in cold storage at 4°C. Postmortem MRI of the brain was performed using T1-weighted imaging (T1WI), T2WI, fluid attenuated inversion recovery (FLAIR) imaging, and diffusion weighted imaging (DWI) with parameters identical to those used for living persons.

Results

In all cases, postmortem CT showed brain edema and swelling. Postmortem MRI showed characteristic common signal intensity (SI) changes, including (1) high SI of the basal ganglia and thalamus on T1WI; (2) suppression of fat SI on T2WI; (3) insufficient SI suppression of cerebrospinal fluid on FLAIR imaging; (4) high SI rims along the cerebral cortices and the ventricular wall on DWI; and (5) an apparent diffusion coefficient decrease to less than half the normal value.

Conclusion

Postmortem MRI of the brain in all cases showed characteristic common SI changes. Global cerebral ischemia without following reperfusion and low body temperature explain these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brogdon BG. Reserch and applications of the new modalities. In: Brogdon BG, editor. Forensic radiology. 1st edn. Boca Raton: CRC Press; 1998. p. 333–338.

    Google Scholar 

  2. Swift B, Rutty GN. Recent advances in postmortem forensic radiology: computed tomography and magnetic resonance imaging applications. In: Tsokos M, editor. Forensic pathology reviews. 1st edn. Totowa: Humana; 2006. p. 355–404.

    Google Scholar 

  3. Uchigasaki S. Postmortem ultrasound imaging in forensic pathology. In: Tsokos M, editor. Forensic pathology reviews. 1st edn. Totowa: Humana; 2006. p. 405–412.

    Google Scholar 

  4. Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. Virtopsy: minimally invasive, imaging-guided virtual autopsy. Radiographics 2006;26:1305–1333.

    Article  PubMed  Google Scholar 

  5. Hayakawa M, Yamamoto S, Motani H, Yajima D, Sato Y, Iwase H. Does imaging technology overcome problems of conventional postmortem examination? A trial of computed tomography imaging for postmortem examination. Int J Legal Med 2006;120:24–26.

    Article  PubMed  Google Scholar 

  6. Oyake Y, Aoki T, Shiotani S, Kohno M, Ohashi N, Akutsu H, et al. Postmortem computed tomography for detecting causes of sudden death in infants and children: retrospective review of cases. Radiat Med 2006;24:493–502.

    Article  PubMed  Google Scholar 

  7. Chew FS, Relyea-Chew A, Ochoa ER Jr. Postmortem computed tomography of cadavers embalmed for use in teaching gross anatomy. J Comput Assist Tomogr 2006;30:949–954.

    Article  PubMed  Google Scholar 

  8. Ljung P, Winskog C, Persson A, Lundstrom C, Ynnerman A. Full body virtual autopsies using a state-of-the-art volume rendering pipeline. IEEE Trans Vis Comput Graph 2006;12:869–876.

    Article  PubMed  Google Scholar 

  9. Poulsen K, Simonsen J. Computed tomography as routine in connection with medico-legal autopsies. Forensic Sci Int 2007;171:190–197.

    Article  PubMed  Google Scholar 

  10. Levy AD, Harcke HT, Getz GM, Mallak CT, Caruso JL, Pearse L, et al. Virtual autopsy: two- and three-dimensional multidetector CT findings in drowning with a autopsy comparison. Radiology 2007;243:862–868.

    Article  PubMed  Google Scholar 

  11. O’Donnell C, Rotman A, Collett S, Woodford N. Current status of routine post-mortem CT in Melbourne, Australia. Forensic Sci Med Pathol 2008;3:226–232.

    Article  Google Scholar 

  12. Shiotani S, Shiigai M, Ueno Y, Sakamoto N, Atake S, Kohno M, et al. Postmortem computed tomography findings as evidence of traffic accident-related fatal injury. Radiat Med 2008;26:253–260.

    Article  PubMed  Google Scholar 

  13. Weustink AC, Hunink MGM, van Dijke CF, Renken NS, Krestin GP, Oosterhuis JW. Minimally invasive autopsy: an alternative to conventional autopsy? Radiology 2009;250:897–904.

    Article  PubMed  Google Scholar 

  14. Sakamoto N, Ohashi N, Hamabe Y, Kohno M, Shiotani S, Hayakawa H, et al. Answers to questionnaire regarding current status and future subjects of postmortem imaging in Japanese emergency center hospitals. Kyukyu Igaku (Japanese Journal of Acute Medicine) 2009;33:985–989 (in Japanese with English abstract).

    Google Scholar 

  15. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Watanabe K, et al. Non-traumatic postmortem computed tomographic (PMCT) findings of the lung. Forensic Sci Int 2004;139:39–48.

    Article  PubMed  Google Scholar 

  16. Shiotani S, Watanabe K, Kohno M, Ohashi N, Yamazaki K, Nakayama H. Postmortem computed tomographic (PMCT) findings of pericardial effusion due to acute aortic dissection. Radiat Med 2004;22:405–407.

    PubMed  Google Scholar 

  17. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Itai Y. Postmortem intravascular high density fluid level (hypostasis): CT findings. J Comput Assist Tomogr 2002;26:892–893.

    Article  PubMed  Google Scholar 

  18. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Ito Y, et al. Hyperattenuating aortic wall on postmortem computed tomography (PMCT). Radiat Med 2002;20:201–206.

    PubMed  Google Scholar 

  19. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Watanabe K, et al. Dilatation of the heart on postmortem computed tomography (PMCT): comparison with live CT. Radiat Med 2003;21:29–35.

    PubMed  Google Scholar 

  20. Shiotani S, Kohno M, Ohashi N, Yamazaki K, Nakayama H, Watanabe K, et al. Post-mortem computed tomographic (PMCT) demonstration of the relation between gastrointestinal (GI) distension and hepatic portal venous gas (HPVG). Radiat Med 2004;22:25–29.

    PubMed  Google Scholar 

  21. Shiotani S, Kohno M, Ohashi N, Atake S, Yamazaki K, Nakayama H. Cardiovascular gas on non-traumatic postmortem computed tomography (PMCT): the influence of cardiopulmonary resuscitation. Radiat Med 2005;23:225–229.

    PubMed  Google Scholar 

  22. Tofts PS, Jackson JS, Tozer DJ, Cercignani M, Keir G, Mac-Manuset DG, et al. Imaging cadavers: cold FLAIR and noninvasive brain thermometry using CSF diffusion. Magn Reson Med 2008;59:190–195.

    Article  PubMed  Google Scholar 

  23. Yen K, Lovblad KO, Scheurer E, Ozdoba C, Thali M, Aghayev E, et al. Post-mortem forensic neuroimaging: correlation of MSCT and MRI findings with autopsy results. Forensic Sci Int 2007;173:21–35.

    Article  PubMed  CAS  Google Scholar 

  24. Shepherd R. Unexpected and sudden death from natural causes. In: Shepherd R, editor. Simpson’s forensic medicine. 12th edn. London: Arnold; 2003. p. 120–127.

    Google Scholar 

  25. Sarwar M, McCormick WF. Decrease in ventricular and sulcal size after death. Radiology 1978;127:409–411.

    PubMed  CAS  Google Scholar 

  26. Dähnert W. Infarction of brain. In: Dähnert W, editor. Radiology review manual. 6th edn. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2006. p. 299–300.

    Google Scholar 

  27. Osborn AG. Acute infarcts. In: Osborn AG, editor. Diagnostic neuroradiology. 1st edn. St. Louis: Mosby-Year Book; 1994. p. 343–349.

    Google Scholar 

  28. Osborn AG. Miscellaneous acquired basal ganglia disorders. In: Osborn AG, editor. Diagnostic neuroradiology. 1st edn. St. Louis: Mosby-Year Book; 1994. p. 775–777.

    Google Scholar 

  29. Dietrich RB, Bradley WG. Iron accumulation in the basal ganglion following severe ischemic-anoxic insults in children. Radiology 1988;168:203–206.

    PubMed  CAS  Google Scholar 

  30. Fujioka M, Taoka T, Hiramatsu KI, Sakaguchi S, Sakaki T. Delayed ischemic hyperintensity on T1-weighted MRI in the caudoputamen and cerebral cortex of humans after spectacular shrinking deficit. Stroke 1999;30:1038–1042.

    PubMed  CAS  Google Scholar 

  31. Fujioka M, Taoka T, Matsuo Y, Hiramatsu KI, Sakaki T. Novel brain ischemic change on MRI: delayed ischemic hyper-intensity on T1-weighted images and selective neuronal death in the caudoputamen of rats after brief focal ischemia. Stroke 1999;30:1043–1046.

    PubMed  CAS  Google Scholar 

  32. Fujioka M, Taoka T, Matsuo Y, Mishima K, Ogoshi K, Kondo Y, et al. Magnetic resonance imaging shows delayed ischemic striatal neurodegeneration. Ann Neurol 2003;54:732–747.

    Article  PubMed  Google Scholar 

  33. Barkovich AJ. Diffuse ischemic brain injury. In: Barkovich AJ, editor. Pediatric neuroimaging. 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 203–244.

    Google Scholar 

  34. Liu XH, Kato H, Itoyama Y, Kato K, Kosuge K. An immunohistochemical study of copper/zinc superoxide dismutase and manganese superoxide dismutase following focal cerebral ischemia in the rat. Brain Res 1994;644:257–266.

    Article  PubMed  CAS  Google Scholar 

  35. Kondo Y, Ogawa N, Asamura M, Ota Z, Mori A. Regional differences in late-onset iron deposition, ferritin, transferring, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. J Cereb Flow Metab 1995;15:216–226.

    CAS  Google Scholar 

  36. Gossuin Y, Roch A, Muller RN, Gillis P. Relaxation induce by ferritin and ferritin-like magnetic particles: the role of proton exchange. Magn Reson Med 2000;43:237–343.

    Article  PubMed  CAS  Google Scholar 

  37. Henkelman RM, Hardy PA, Bishop JE, Poon CS, Plewes DB. Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 1992;2:533–540.

    Article  PubMed  CAS  Google Scholar 

  38. Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 1948;73:679–712.

    Article  CAS  Google Scholar 

  39. Burdette JH, Elster AD, Ricci PE. Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 1999;212:333–339.

    PubMed  CAS  Google Scholar 

  40. Helenius J, Soinne L, Perkiö J, Salonen O, Kangasmäki A, Kaste M, et al. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 2002;23:194–199.

    PubMed  Google Scholar 

  41. Wijdics EFM, Campeau NG, Miller GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol 2001;22:1561–1565.

    Google Scholar 

  42. Arbelaez A, Castillo M, Mukherji SK. Diffusion-weighted MR imaging of global cerebral anoxia. AJNR Am J Neuroradiol 1999;20:999–1007.

    PubMed  CAS  Google Scholar 

  43. Sener RN. Diffusion MRI in the postmortem brain: case report. J Neuroradiol 2004;31:406–408.

    Article  PubMed  CAS  Google Scholar 

  44. Anzai Y, Ishikawa M, Shaw DWW, Artru A, Yarnykh V, Maravilla KR. Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid-attenuated inversion recovery MR images. AJNR Am J Neuroradiol 2004;25:274–279.

    PubMed  Google Scholar 

  45. Ith M, Bigler P, Scheurer E, Kreis R, Hofmann L, Dirnhofer R, et al. Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ 1H-magnetic resonance spectroscopy. Magn Reson Med 2002;48:915–920.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Kobayashi.

About this article

Cite this article

Kobayashi, T., Shiotani, S., Kaga, K. et al. Characteristic signal intensity changes on postmortem magnetic resonance imaging of the brain. Jpn J Radiol 28, 8–14 (2010). https://doi.org/10.1007/s11604-009-0373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-009-0373-9

Key words

Navigation