Skip to main content
Log in

High-signal-intensity abnormalities evaluated by 3D fluid-attenuated inversion recovery imaging within the drainage territory of developmental venous anomalies identified by susceptibility-weighted imaging at 3 T

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate brain parenchymal high-signal-intensity abnormalities within the drainage territory of developmental venous anomalies (DVAs) identified by susceptibility-weighted imaging (SWI) at 3 T.

Methods

One hundred and thirty patients with 137 DVAs identified by SWI were retrospectively studied. 3D fluid-attenuated inversion recovery (FLAIR) images were reviewed for parenchymal high-signal-intensity abnormalities and SWI images were reviewed for hypointense foci (microhemorrhages or cavernous malformations) adjacent to DVAs. Patient age, the degree of underlying white matter disease, DVA location (supratentorial or infratentorial), and the presence or absence of hypointense foci were compared across DVAs with and without high-signal-intensity abnormalities. The correlation between patient age and the size of any high-signal-intensity abnormality was analyzed using linear regression.

Results

Forty-two of 137 DVAs (30.7 %) had high-signal-intensity abnormalities. An adjusted prevalence of 18/71 (25.4 %) was obtained after excluding patients with considerable underlying white matter disease. Only DVA location (supratentorial) was associated with the presence of high-signal-intensity abnormalities (p < 0.05). There was a significant correlation between patient age and the size of high-signal-intensity abnormalities (p < 0.01).

Conclusions

3D FLAIR imaging permits detection of small high-signal-intensity abnormalities within the drainage territory of DVAs. The size of high-signal-intensity abnormalities increased with patient age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilms G, Bleus E, Demaerel P, Marchal G, Plets C, Goffin J, et al. Simultaneous occurrence of developmental venous anomalies and cavernous angiomas. AJNR Am J Neuroradiol. 1994;15:1247–54.

    CAS  PubMed  Google Scholar 

  2. Huber G, Henkes H, Hermes M, Felber S, Terstegge K, Piepgras U. Regional association of developmental venous anomalies with angiographically occult vascular malformations. Eur Radiol. 1996;6:30–7.

    Article  CAS  PubMed  Google Scholar 

  3. Abe T, Singer RJ, Marks MP, Norbash AM, Crowley RS, Steinberg GK. Coexistence of occult vascular malformations and developmental venous anomalies in the central nervous system: MR evaluation. AJNR Am J Neuroradiol. 1998;19:51–7.

    CAS  PubMed  Google Scholar 

  4. Lasjaunias P, Burrows P, Planet C. Developmental venous anomalies (DVA): the so-called venous angioma. Neurosurg Rev. 1986;9:233–42.

    Article  CAS  PubMed  Google Scholar 

  5. Okudera T, Huang YP, Fukusumi A, Nakamura Y, Hatazawa J, Uemura K. Micro-angiographical studies of the medullary venous system of the cerebral hemisphere. Neuropathology. 1999;19:93–111.

    Article  CAS  PubMed  Google Scholar 

  6. San Millán Ruíz D, Delavelle J, Yilmaz H, Gailloud P, Piovan E, Bertramello A. Parenchymal abnormalities associated with developmental venous anomalies. Neuroradiology. 2007;49:987–95.

    Article  PubMed  Google Scholar 

  7. Takasugi M, Fujii S, Shinohara Y, Kaminou T, Watanabe T, Ogawa T. Parenchymal hypointense foci associated with developmental venous anomalies: evaluation by phase-sensitive MR imaging at 3T. AJNR Am J Neuroradiol. 2013;34:1940–4.

    Article  CAS  PubMed  Google Scholar 

  8. Santucci GM, Leach JL, Ying J, Leach SD, Tomsick TA. Brain parenchymal signal abnormalities associated with developmental venous anomalies: detailed MR imaging assessment. AJNR Am J Neuroradiol. 2008;29:1317–23.

    Article  CAS  PubMed  Google Scholar 

  9. Reichenbach JR, Jonetz-Mentzel L, Fitzek C, Haacke EM, Kido DK, Lee BC, et al. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology. 2001;43:364–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kitajima M, Hirai T, Shigematsu Y, Uetani H, Iwashita K, Morita K, et al. Comparison of 3D FLAIR, 2D FLAIR, and 2D T2-weighted MR imaging of brain stem anatomy. AJNR Am J Neuroradiol. 2012;33:922–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kallmes DF, Hui FK, Mugler JP 3rd. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience. Radiology. 2001;221:251–5.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Bodhey NK, et al. Clinical applications of susceptibility weighted MR imaging of the brain––a pictorial review. Neuroradiology. 2008;50:105–16.

    Article  PubMed  Google Scholar 

  13. Kakeda S, Korogi Y, Hiai Y, Ohnari N, Sato T, Hirai T. Pitfalls of 3D FLAIR brain imaging: a prospective comparison with 2D FLAIR. Acad Radiol. 2012;19:1225–32.

    Article  PubMed  Google Scholar 

  14. Noran HH. Intracranial vascular tumors and malformations. Arch Pathol Lab Med. 1945;39:393–416.

    Google Scholar 

  15. Hachinski VC, Potter P, Merskey H. Leuko-araiosis: an ancient term for a new problem. Can J Neurol Sci. 1986;13:533–4.

    CAS  PubMed  Google Scholar 

  16. Hachinski VC, Potter P, Merskey H. Leuko-araiosis. Arch Neurol. 1987;44:21–3.

    Article  CAS  PubMed  Google Scholar 

  17. Munoz DG, Hastak SM, Harper B, Lee D, Hachinski VC. Pathologic correlates of increased signals of the centrum ovale on magnetic resonance imaging. Arch Neurol. 1993;50:492–7.

    Article  CAS  PubMed  Google Scholar 

  18. Moody DM, Brown WR, Challa VR, Anderson RL. Periventricular venous collagenosis: association with leukoaraiosis. Radiology. 1995;194:469–76.

    Article  CAS  PubMed  Google Scholar 

  19. Brown WR, Moody DM, Challa VR, Thore CR, Anstrom JA. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci. 2002;15:159–63.

    Article  Google Scholar 

  20. Töpper R, Jürgens E, Reul J, Thron A. Clinical significance of intracranial developmental venous anomalies. J Neurol Neurosurg Psychiatry. 1999;67:234–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

Maki Umino: the authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maki Umino.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umino, M., Maeda, M., Matsushima, N. et al. High-signal-intensity abnormalities evaluated by 3D fluid-attenuated inversion recovery imaging within the drainage territory of developmental venous anomalies identified by susceptibility-weighted imaging at 3 T. Jpn J Radiol 32, 397–404 (2014). https://doi.org/10.1007/s11604-014-0322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-014-0322-0

Keywords

Navigation