Skip to main content

Advertisement

Log in

Differences between glioblastomas and primary central nervous system lymphomas in 1H-magnetic resonance spectroscopy

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

The present study aimed to distinguish between glioblastomas and primary central nervous system lymphomas (PCNSLs) using 1H-magnetic resonance spectroscopy (MRS), especially glutamate (Glu)/creatine (Cr) and Glu/Glu+glutamine (Gln) ratios.

Materials and methods

A total of 46 patients (31 cases diagnosed with glioblastoma, 15 with PCNSL) were examined by in vivo single-voxel proton 1H-MRS with a 3-T MR imaging system. Differences in absolute concentration of Cr, choline/Cr, lipid (1.3 ppm)/Cr, Glu+Gln/Cr, Glu/Cr, and Glu/Glu+Gln ratios among groups were evaluated with Mann–Whitney U tests.

Results

PCNSLs [3.408 ± 1.194 (standard deviation)] showed significantly higher Glu/Cr ratios as compared to glioblastomas (2.220 ± 0.942; P = 0.003) [Glu/Cr cutoff ratio of 2.509 showed a sensitivity of 88 % (7/8) and a specificity of 92 % (22/24)], while glioblastomas (0.539 ± 0.098) showed significantly lower Glu/Glu+Gln ratios as compared to PCNSLs (0.728 ± 0.147; P < 0.001) [Glu/Glu+Gln cutoff ratio of 0.558 showed a sensitivity of 69 % (18/26) and a specificity of 100 % (13/13)]. And PCNSLs (1.101 ± 0.387) showed significantly higher Cho/Cr ratios as compared to glioblastomas (0.850 ± 0.465; P = 0.026).

Conclusion

Glu/Cr, Glu/Glu+Gln, and Cho/Cr ratios may be useful in distinguishing between glioblastomas and PCNSLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harting I, Hartmann M, Jost G, Sommer C, Ahmadi R, Heiland S, et al. Differentiating primary central nervous system lymphoma from glioma in humans using localised proton magnetic resonance spectroscopy. Neurosci Lett. 2013;342:163–6.

    Article  Google Scholar 

  2. Chawla S, Zhang Y, Wang S, Chaudhary S, Chou C, O’Rourke DM, et al. Proton magnetic resonance spectroscopy in differentiating glioblastomas from primary cerebral lymphomas and brain metastases. J Comput Assist Tomogr. 2010;34:836–41.

    Article  PubMed  Google Scholar 

  3. Braitenberg V, Schüz A. Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer-Verlag; 1998.

    Book  Google Scholar 

  4. Agarwal N, Renshaw PF. Proton MR spectroscopy-detectable major neurotransmitters of the brain: biology and possible clinical applications. AJNR Am J Neuroradiol. 2012;33:595–602.

    Article  CAS  PubMed  Google Scholar 

  5. Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ. In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol. 2010;97:11–23.

    Article  CAS  PubMed  Google Scholar 

  6. Lehmann C, Bette S, Engele J. High extracellular glutamate modulates expression of glutamate transporters and glutamine synthetase in cultured astrocytes. Brain Res. 2009;1297:1–8.

    Article  CAS  PubMed  Google Scholar 

  7. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30:672–9.

    Article  CAS  PubMed  Google Scholar 

  8. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260–4.

    Article  CAS  PubMed  Google Scholar 

  9. Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006;1:97–117.

    Article  CAS  PubMed  Google Scholar 

  10. Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol. 1995;16:1593–603.

    CAS  PubMed  Google Scholar 

  11. Guo AC, Cummings TJ, Dash RC, Provenzale JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology. 2002;224:177–83.

    Article  PubMed  Google Scholar 

  12. Toh CH, Castillo M, Wong AM, Wei KC, Wong HF, Ng SH, et al. Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol. 2008;29:471–5.

    Article  PubMed  Google Scholar 

  13. Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev. 2004;45:250–65.

    Article  CAS  PubMed  Google Scholar 

  14. Pow DV, Robinson SR. Glutamate in some retinal neurons is derived solely from glia. Neuroscience. 1994;60:355–66.

    Article  CAS  PubMed  Google Scholar 

  15. Evan N, Kamel K. Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol Ther. 2009;8:1791–7.

    Google Scholar 

  16. Ye ZC, Rothstein JD, Sontheimer H. Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci. 1999;19:10767–77.

    CAS  PubMed  Google Scholar 

  17. Pfund Z, Chugani DC, Juhasz C, Muzik O, Chugani HT, Wilds IB, et al. Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and 1H magnetic resonance spectroscopy in patients with epilepsy. J Cereb Blood Flow Metab. 2000;20:871–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H. 18F-FDG PET of common enhancing malignant brain tumors. AJR Am J Roentgenol. 2008;190:365–9.

    Article  Google Scholar 

  19. Kinoshita Y, Yokota A. Absolute concentrations of metabolites in human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed. 1997;10:2–12.

    Article  CAS  PubMed  Google Scholar 

  20. Sijens PE, Oudkerk M, van Dijk P, Levendag PC, Vecht CJ. MR spectroscopy monitoring of changes in Cho peak area and line shape after Gd-contrast administration. Magn Reson Imag. 1998;16:1273–80.

    Article  CAS  Google Scholar 

  21. Sijens PE, van den Bent MJ, Nowak PJ, van Dijk P, Oudkerk M. 1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med. 1997;37:222–5.

    Article  CAS  PubMed  Google Scholar 

  22. Murphy PS, Leach MO, Rowland IJ. The effects of paramagnetic contrast agents on metabolite protons in aqueous solution. Phys Med Biol. 2002;47:53–9.

    Google Scholar 

  23. Lima EC, Otaduy MCG, Tsunemi M, Pincerato R, Cardoso EF, Rosemberg S, Aguiar PH, Cerri GG, Leite CC. The effect of paramagnetic contrast in choline peak in patients with glioblastoma multiforme might not be significant. AJNR Am J Neuroradiol. 2013;34:80–4.

    Article  CAS  PubMed  Google Scholar 

  24. Helms G. Analysis of 1.5 Tesla proton MR spectra of human brain using LCModel and an imported basis set. Magn Reson Imag. 1999;17:1211–8.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard and patient consent

We declare that all human and animal studies have been approved by Kanazawa University Graduate School of Medicine and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Aburano.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aburano, H., Ueda, F., Yoshie, Y. et al. Differences between glioblastomas and primary central nervous system lymphomas in 1H-magnetic resonance spectroscopy. Jpn J Radiol 33, 392–403 (2015). https://doi.org/10.1007/s11604-015-0430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-015-0430-5

Keywords

Navigation