Skip to main content

Advertisement

Log in

Pseudoprogression: Relevance With Respect to Treatment of High-Grade Gliomas

  • CNS Malignancies
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The post-treatment imaging assessment of high-grade gliomas remains challenging notwithstanding the increased utilization of advanced MRI and PET imaging. Several post-treatment imaging entities are recognized including: late-delayed radiation injury, including radionecrosis mimicking tumor progression; early-delayed (within 6 months of temozolomide-based chemoradiation) post-treatment radiographic changes, herein referred to as pseudoprogression (the subject of this review); early post-treatment changes following local glioma therapy (i.e. biodegradable BCNU wafer implantation or stereotactic radiotherapy); and pseudoresponse, seen following treatment with angiogenic inhibition based therapy such as bevacizumab. A literature review searched specifically for “pseudoprogression” within the last 5 years (2005–2010). Approximately 24 recent papers were identified and reviewed in detail. Eight small population-based studies demonstrate 26–58% (median 49%) of glioblastoma patients treated with chemoradiotherapy manifest early disease progression at first post-radiotherapy imaging. Patients with early radiographic disease progression continued on planned therapy, and a median of 38% (range 28–66%) showed radiographic improvement or stabilization and were defined retrospectively as manifesting pseudoprogression. In conclusion, pseudoprogression is a frequent early post-treatment imaging change that at present is not easily differentiated from tumor progression by anatomic or physiologic brain imaging. Consequently, an operational definition of pseudoprogression has been adopted by the Response Assessment in Neuro-Oncology Working Group wherein either the index (i.e. target) lesion stabilizes or diminishes in size on continued post-radiation (temozolomide) therapy as determined by follow-up radiologic imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hoffman WF, Levin VA, Wilson CB. Evaluation of malignant glioma patients during the postirradiation period. J Neurosurg. 1979;50(5):624–8.

    Article  PubMed  CAS  Google Scholar 

  2. Levin VA et al. Criteria for evaluating patients undergoing chemotherapy for malignant brain tumors. J Neurosurg. 1977;47(3):329–35.

    Article  PubMed  CAS  Google Scholar 

  3. Cascino TLK, Kimmel DW, Dinapoli RP, et al. Report of four cases with a resolving syndrome which otherwise simulates recurrent brain tumor. Neurology. 1988;38(Supplement 1):306.

    Google Scholar 

  4. Macdonald DR et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.

    PubMed  CAS  Google Scholar 

  5. Graeb DA, Steinbok P, Robertson WD. Transient early computed tomographic changes mimicking tumor progression after brain tumor irradiation. Radiology. 1982;144(4):813–7.

    PubMed  CAS  Google Scholar 

  6. de Wit MC et al. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63(3):535–7.

    PubMed  Google Scholar 

  7. Stupp R et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  8. Chamberlain MC et al. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol. 2007;82(1):81–3.

    Article  PubMed  Google Scholar 

  9. Taal W et al. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer. 2008;113(2):405–10.

    Article  PubMed  CAS  Google Scholar 

  10. Brandes AA et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.

    Article  PubMed  Google Scholar 

  11. Sanghera P et al. Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci. 2010;37(1):36–42.

    PubMed  Google Scholar 

  12. Roldan GB et al. Population-based study of pseudoprogression after chemoradiotherapy in GBM. Can J Neurol Sci. 2009;36(5):617–22.

    PubMed  Google Scholar 

  13. Wen PY, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  14. Zeng QS et al. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol. 2007;84(1):63–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hu LS, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.

    Article  PubMed  CAS  Google Scholar 

  16. Hein PA et al. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25(2):201–9.

    PubMed  Google Scholar 

  17. Kashimura H et al. Diffusion tensor imaging for differentiation of recurrent brain tumor and radiation necrosis after radiotherapy–three case reports. Clin Neurol Neurosurg. 2007;109(1):106–10.

    Article  PubMed  Google Scholar 

  18. Schlemmer HP et al. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol. 2001;22(7):1316–24.

    PubMed  CAS  Google Scholar 

  19. Plotkin M et al. 123I-IMT SPECT and 1 H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol. 2004;70(1):49–58.

    Article  PubMed  Google Scholar 

  20. Sugahara T et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21(5):901–9.

    PubMed  CAS  Google Scholar 

  21. Galban CJ et al. The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med. 2009;15(5):572–6.

    Article  PubMed  CAS  Google Scholar 

  22. Tsien C., et al. Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol. 2010;28(13):2293–9.

    Article  PubMed  CAS  Google Scholar 

  23. Ricci PE et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol. 1998;19(3):407–13.

    PubMed  CAS  Google Scholar 

  24. Spence AM et al. 18 F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med. 2004;45(10):1653–9.

    PubMed  Google Scholar 

  25. Chen W et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18 F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol. 2007;25(30):4714–21.

    Article  PubMed  CAS  Google Scholar 

  26. Muzi M et al. Kinetic analysis of 3′-deoxy-3′-18 F-fluorothymidine in patients with gliomas. J Nucl Med. 2006;47(10):1612–21.

    PubMed  CAS  Google Scholar 

  27. Spence AM et al. NCI-sponsored trial for the evaluation of safety and preliminary efficacy of 3′-deoxy-3′-[18 F]fluorothymidine (FLT) as a marker of proliferation in patients with recurrent gliomas: preliminary efficacy studies. Mol Imaging Biol. 2009;11(5):343–55.

    Article  PubMed  Google Scholar 

  28. Terakawa Y et al. Diagnostic accuracy of 11 C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49(5):694–9.

    Article  PubMed  Google Scholar 

  29. Rachinger W et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery. 2005;57(3):505–11. discussion 505–11.

    Article  PubMed  Google Scholar 

  30. Pytel P, Lukas RV. Update on diagnostic practice: tumors of the nervous system. Arch Pathol Lab Med. 2009;133(7):1062–77.

    PubMed  CAS  Google Scholar 

  31. Fabi A et al. Pseudoprogression and MGMT status in glioblastoma patients: implications in clinical practice. Anticancer Res. 2009;29(7):2607–10.

    PubMed  Google Scholar 

  32. Sayyari A. A., et al., Distinguishing recurrent primary brain tumor from radiation injury: a preliminary study using a susceptibility-weighted MR imaging-guided apparent diffusion coefficient analysis strategy. AJNR Am J Neuroradiol. 2010;31(6):1049–54.

    Article  PubMed  Google Scholar 

  33. Miyatake S et al. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro Oncology. 2009;11(4):430–6.

    Article  PubMed  Google Scholar 

  34. Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol. 2006;111(3):197–212.

    Article  PubMed  CAS  Google Scholar 

  35. Tihan T et al. Prognostic value of detecting recurrent glioblastoma multiforme in surgical specimens from patients after radiotherapy: should pathology evaluation alter treatment decisions? Hum Pathol. 2006;37(3):272–82.

    Article  PubMed  Google Scholar 

  36. Cao Y et al. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. J Clin Oncol. 2005;23(18):4127–36.

    Article  PubMed  Google Scholar 

  37. Lemasson B et al. Monitoring blood-brain barrier status in a rat model of glioma receiving therapy: dual injection of low-molecular-weight and macromolecular MR contrast media. Radiology. 2010;257(2):342–52.

    Article  PubMed  Google Scholar 

  38. Chamberlain MC. Emerging clinical principles on the use of bevacizumab for the treatment of malignant gliomas. Cancer 2010;116(17):3988–99.

    Article  PubMed  CAS  Google Scholar 

  39. Sorensen AG et al. Response criteria for glioma. Nat Clin Pract Oncol. 2008;5(11):634–44.

    Article  PubMed  Google Scholar 

  40. Henson JW, Ulmer S, Harris GJ. Brain tumor imaging in clinical trials. AJNR Am J Neuroradiol. 2008;29(3):419–24.

    Article  PubMed  CAS  Google Scholar 

  41. Gerstner ER, Batchelor TT. Imaging and response criteria in gliomas. Curr Opin Oncol. 2010;22(6):598–603.

    Article  PubMed  Google Scholar 

  42. Brandsma, D., van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol. 2009;22(6):633–8.

    Article  PubMed  Google Scholar 

Download references

Disclosures

No potential conflicts of interest relevant to this article were reported.

The authors report no conflict of interest.

MCC, JF and DB conducted the statistical analysis for this manuscript.

MCC, JF and DB collected and analyzed data.

No personal communications cited in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Chamberlain MD.

Additional information

Left running head: CNS Malignancies

Right running head: Pseudoprogression: Relevance With Respect to Treatment of High-Grade Gliomas Fink, Born, and Chamberlain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, J., Born, D. & Chamberlain, M.C. Pseudoprogression: Relevance With Respect to Treatment of High-Grade Gliomas. Curr. Treat. Options in Oncol. 12, 240–252 (2011). https://doi.org/10.1007/s11864-011-0157-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-011-0157-1

Keywords

Navigation