Skip to main content

Advertisement

Log in

Anaplastic Glioma

  • NEURO-ONCOLOGY (NEUROPLASMS) (M ROSENFELD, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion Statement

The treatment of anaplastic glioma (AG) varies depending on histopathology of the tumor, molecular markers, and individual patient characteristics. Maximal surgical resection is desirable for all types of AG if technically feasible, with an acceptable level of risk, and with the goal of preserving neurologic function. As opposed to the standard treatment of glioblastoma, based on a large, randomized, phase 3 trial, there is no accepted standard treatment for AG. Anaplastic astrocytoma (AA) is most often treated with radiotherapy (RT), with or without concomitant temozolomide (TMZ) and with or without adjuvant temozolomide. Rarely is AA treated with chemotherapy alone, although different treatment modalities are being evaluated in ongoing trials. The treatment of anaplastic oligodendroglioma (AO) and anaplastic oligoastrocytoma (AOA) is influenced by the 1p/19q status, as allelic co-deletion of chromosomes 1p and 19q predicts increased sensitivity to chemotherapy and prolonged survival. In contrast to the treatment of AA, carefully selected patients with AO and AOA may be treated with chemotherapy alone. Temozolomide has largely replaced PCV (procarbazine, CCNU, vincristine) as the chemotherapeutic agent for AO and AOA, largely due to greater tolerability and less potential for toxicity. However, whether temozolomide has similar efficacy to PCV has not been fully evaluated. Patients with AO and AOA with significant residual tumor after surgery, intractable seizures, and/or non co-deleted 1p/19q status are often treated with RT with or without concomitant chemotherapy and with or without adjuvant chemotherapy. There is no standard postoperative care for anaplastic ependymoma (AE). The efficacy of upfront versus delayed RT has not been evaluated. Surgery may be indicated for patients with recurrent AG. There may be benefit on overall survival, although this has not been clearly proven. Reoperation may also provide symptomatic relief and confirm the pathology, including differentiation of radiation necrosis from recurrent tumor. Confirmation of tumor grade is often important for enrollment in clinical trials, a reasonable treatment choice for patients with recurrent tumor. Treatment of recurrent AG often depends on prior treatments. Patients who have progressed after RT alone may be treated with temozolomide or PCV. Patients treated previously with chemotherapy alone may be treated with RT at time of progression. Dose-intense temozolomide, bevacizumab alone, or bevacizumab in combination with a cytotoxic agent are other treatment options. Focused radiation such as stereotactic radiosurgery has no proven role in treating recurrent AG. A number of other treatment modalities are currently under active investigation, including targeted molecular inhibitors, immunotherapies, convection enhanced delivery, and viral gene therapies. There is no standard treatment for recurrent AE. Most patients undergo re-resection followed by RT if RT was not previously given. Chemotherapy may be given, but there is no standard chemotherapeutic regimen. Ongoing trials are evaluating the role of bevicizumab and targeted molecular agents in the treatment of AE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  PubMed  CAS  Google Scholar 

  2. CBTRUS (2008). CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2000–2004. Source: Central Brain Tumor Registry of the United States, Hinsdale, IL. website:www.cbtrus.org.

  3. Schild SE, Nisi K, Scheithauer BW, et al. The results of radiotherapy for ependymomas: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys. 1998;42:953–8.

    Article  PubMed  CAS  Google Scholar 

  4. Vanuytsel L, Brada M. The role of prophylactic spinal irradiation in localized intracranial ependymoma. Int J Radiat Oncol Biol Phys. 1991;21:825–30.

    Article  PubMed  CAS  Google Scholar 

  5. Ino Y, Betensky RA, Zlatescu MC, et al. Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res. 2001;7:839–45.

    PubMed  CAS  Google Scholar 

  6. Colman H, Aldape K. Molecular predictors in glioblastoma: toward personalized therapy. Arch Neurol. 2008;65:877–83.

    Article  PubMed  Google Scholar 

  7. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  PubMed  CAS  Google Scholar 

  8. McLendon R. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

  9. Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.

    Article  PubMed  CAS  Google Scholar 

  10. Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27:740–5.

    Article  PubMed  CAS  Google Scholar 

  11. de Bont JM, den Boer ML, Kros JM, et al. Identification of novel biomarkers in pediatric primitive neuroectodermal tumors and ependymomas by proteome-wide analysis. J Neuropathol Exp Neurol. 2007;66:505–16.

    Article  PubMed  Google Scholar 

  12. De Bustos C, Smits A, Stromberg B, et al. A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas. J Med Genet. 2005;42:31–7.

    Article  PubMed  Google Scholar 

  13. Lim M, Guccione S, Haddix T, et al. Alpha(v)beta(3) Integrin in central nervous system tumors. Hum Pathol. 2005;36:665–9.

    Article  PubMed  CAS  Google Scholar 

  14. Roma AA, Prayson RA. Expression of cyclo-oxygenase-2 in ependymal tumors. Neuropathology. 2006;26:422–8.

    Article  PubMed  Google Scholar 

  15. Gilbertson RJ, Bentley L, Hernan R, et al. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res. 2002;8:3054–64.

    PubMed  CAS  Google Scholar 

  16. Hall WA, Merrill MJ, Walbridge S, Youle RJ. Epidermal growth factor receptors on ependymomas and other brain tumors. J Neurosurg. 1990;72:641–6.

    Article  PubMed  CAS  Google Scholar 

  17. Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26:4189–99.

    Article  PubMed  CAS  Google Scholar 

  18. •• Wick W, Hartmann C, Engel C et al. NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 2009; 27: 5874–5880.

    Article  PubMed  CAS  Google Scholar 

  19. Buccoliero AM, Castiglione F. Rossi Degl’Innocenti D et al. O6-Methylguanine-DNA-methyltransferase in recurring anaplastic ependymomas: PCR and immunohistochemistry. J Chemother. 2008;20:263–8.

    PubMed  CAS  Google Scholar 

  20. Miller CR, Dunham CP, Scheithauer BW, Perry A. Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol. 2006;24:5419–26.

    Article  PubMed  Google Scholar 

  21. McDonald JM, See SJ, Tremont IW, et al. The prognostic impact of histology and 1p/19q status in anaplastic oligodendroglial tumors. Cancer. 2005;104:1468–77.

    Article  PubMed  CAS  Google Scholar 

  22. Cairncross JG, Ueki K, Zlatescu MC, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998;90:1473–9.

    Article  PubMed  CAS  Google Scholar 

  23. Thiessen B, Maguire JA, McNeil K, et al. Loss of heterozygosity for loci on chromosome arms 1p and 10q in oligodendroglial tumors: relationship to outcome and chemosensitivity. J Neurooncol. 2003;64:271–8.

    Article  PubMed  Google Scholar 

  24. Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118:469–74.

    Article  PubMed  Google Scholar 

  25. Houillier C, Wang X, Kaloshi G, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75:1560–6.

    Article  PubMed  CAS  Google Scholar 

  26. • van den Bent MJ, Dubbink HJ, Marie Y et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 2010; 16: 1597–1604.

    Article  PubMed  Google Scholar 

  27. • Hartmann C, Hentschel B, Wick W et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 2010; 120: 707–718.

    Article  PubMed  Google Scholar 

  28. Sanai N, Polley MY, McDermott MW, et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115:3–8.

    Article  PubMed  Google Scholar 

  29. Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.

    Article  PubMed  CAS  Google Scholar 

  30. Metellus P, Figarella-Branger D, Guyotat J, et al. Supratentorial ependymomas: prognostic factors and outcome analysis in a retrospective series of 46 adult patients. Cancer. 2008;113:175–85.

    Article  PubMed  Google Scholar 

  31. •• Lassman AB, Iwamoto FM, Cloughesy TF et al. International retrospective study of over 1000 adults with anaplastic oligodendroglial tumors. Neuro Oncol 2011; 13: 649–659.

    Article  PubMed  Google Scholar 

  32. Cairncross G, Berkey B, Shaw E, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol. 2006;24:2707–14.

    Article  PubMed  CAS  Google Scholar 

  33. van den Bent MJ, Carpentier AF, Brandes AA, et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol. 2006;24:2715–22.

    Article  PubMed  Google Scholar 

  34. • Mikkelsen T, Doyle T, Anderson J et al. Temozolomide single-agent chemotherapy for newly diagnosed anaplastic oligodendroglioma. J Neurooncol 2009; 92: 57–63.

    Article  PubMed  CAS  Google Scholar 

  35. • Ducray F, del Rio MS, Carpentier C et al. Up-front temozolomide in elderly patients with anaplastic oligodendroglioma and oligoastrocytoma. J Neurooncol 2011; 101: 457–462.

    Article  PubMed  CAS  Google Scholar 

  36. Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5:79–88.

    PubMed  CAS  Google Scholar 

  37. Wen PY, Brandes AA. Treatment of recurrent high-grade gliomas. Curr Opin Neurol. 2009;22:657–64.

    Article  PubMed  CAS  Google Scholar 

  38. Tsao MN, Mehta MP, Whelan TJ, et al. The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys. 2005;63:47–55.

    Article  PubMed  Google Scholar 

  39. Cairncross G, Macdonald D, Ludwin S, et al. Chemotherapy for anaplastic oligodendroglioma. National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1994;12:2013–21.

    PubMed  CAS  Google Scholar 

  40. van den Bent MJ, Chinot O, Boogerd W, et al. Second-line chemotherapy with temozolomide in recurrent oligodendroglioma after PCV (procarbazine, lomustine and vincristine) chemotherapy: EORTC Brain Tumor Group phase II study 26972. Ann Oncol. 2003;14:599–602.

    Article  PubMed  Google Scholar 

  41. Chinot OL, Honore S, Dufour H, et al. Safety and efficacy of temozolomide in patients with recurrent anaplastic oligodendrogliomas after standard radiotherapy and chemotherapy. J Clin Oncol. 2001;19:2449–55.

    PubMed  CAS  Google Scholar 

  42. Desjardins A, Reardon DA, Herndon 2nd JE, et al. Bevacizumab plus irinotecan in recurrent WHO grade 3 malignant gliomas. Clin Cancer Res. 2008;14:7068–73.

    Article  PubMed  CAS  Google Scholar 

  43. • Kreisl TN, Zhang W, Odia Y et al. A phase II trial of single-agent bevacizumab in patients with recurrent anaplastic glioma. Neuro Oncol 2011; 13: 1143–1150.

    Article  PubMed  CAS  Google Scholar 

  44. • Perry JR, Belanger K, Mason WP et al. Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 2010; 28: 2051–2057.

    Article  PubMed  CAS  Google Scholar 

  45. Brandes AA, Cavallo G, Reni M, et al. A multicenter retrospective study of chemotherapy for recurrent intracranial ependymal tumors in adults by the Gruppo Italiano Cooperativo di Neuro-Oncologia. Cancer. 2005;104:143–8.

    Article  PubMed  Google Scholar 

  46. Rehman S, Brock C, Newlands ES. A case report of a recurrent intracranial ependymoma treated with temozolomide in remission 10 years after completing chemotherapy. Am J Clin Oncol. 2006;29:106–7.

    Article  PubMed  Google Scholar 

  47. Freyschlag CF, Tuettenberg J, Lohr F, et al. Response to temozolomide in supratentorial multifocal recurrence of malignant ependymoma. Anticancer Res. 2011;31:1023–5.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

Dr Paleologos has served on scientific advisory boards and speakers bureaus for Merck and Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina A. Paleologos MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paleologos, N.A., Merrell, R.T. Anaplastic Glioma. Curr Treat Options Neurol 14, 381–390 (2012). https://doi.org/10.1007/s11940-012-0177-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-012-0177-6

Keywords

Navigation