Skip to main content

Advertisement

Log in

Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS

  • Multiple Sclerosis and Related Disorders (J Graves, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

Volumetric analysis of brain imaging has emerged as a standard approach used in clinical research, e.g., in the field of multiple sclerosis (MS), but its application in individual disease course monitoring is still hampered by biological and technical limitations. This review summarizes novel developments in volumetric imaging on the road towards clinical application to eventually monitor treatment response in patients with MS.

Recent findings

In addition to the assessment of whole-brain volume changes, recent work was focused on the volumetry of specific compartments and substructures of the central nervous system (CNS) in MS. This included volumetric imaging of the deep brain structures and of the spinal cord white and gray matter. Volume changes of the latter indeed independently correlate with clinical outcome measures especially in progressive MS. Ultrahigh field MRI and quantitative MRI added to this trend by providing a better visualization of small compartments on highly resolving MR images as well as microstructural information.

Summary

New developments in volumetric imaging have the potential to improve sensitivity as well as specificity in detecting and hence monitoring disease-related CNS volume changes in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Bakshi R, Dandamudi VSR, Neema M, De C, Bermel RA. Measurement of brain and spinal cord atrophy by magnetic resonance imaging as a tool to monitor multiple sclerosis. J Neuroimaging. 2005;15:30S–45S.

    Article  PubMed  Google Scholar 

  2. Zivadinov R, Bergsland N, Korn JR, Dwyer MG, Khan N, Medin J, et al. Feasibility of brain atrophy measurement in clinical routine without prior standardization of the MRI Protocol: results from MS-MRIUS, a longitudinal observational, multicenter real-world outcome study in patients with relapsing-remitting MS. AJNR Am J Neuroradiol 2017.

  3. Giorgio A, De Stefano N. Effective utilization of MRI in the diagnosis and management of multiple sclerosis. Neurol Clin. 2018;36:27–34.

    Article  PubMed  Google Scholar 

  4. Lanz M, Hahn HK, Hildebrandt H. Brain atrophy and cognitive impairment in multiple sclerosis: a review. J Neurol. 2007;254(Suppl 2):II43–8.

    PubMed  Google Scholar 

  5. Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain. 2002;125:1676–95.

    Article  PubMed  Google Scholar 

  6. De Stefano N, Giorgio A, Battaglini M, Rovaris M, Sormani MP, Barkhof F, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74:1868–76.

    Article  PubMed  Google Scholar 

  7. Enzinger C, Barkhof F, Ciccarelli O, Filippi M, Kappos L, Rocca MA, et al. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol. 2015;11:676–86.

    Article  PubMed  Google Scholar 

  8. Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji D, Rotzinger D, et al. Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Ann Clin Transl Neurol. 2014;1:423–32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bonnier G, Maréchal B, Fartaria MJ, Falkowskiy P, Marques JP, Simioni S, et al. The combined quantification and interpretation of multiple quantitative magnetic resonance imaging metrics enlightens longitudinal changes compatible with brain repair in relapsing-remitting multiple sclerosis patients. Front Neurol. 2017;8:506.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oh J, Saidha S, Chen M, Smith SA, Prince J, Jones C, et al. Spinal cord quantitative MRI discriminates between disability levels in multiple sclerosis. Neurology. 2013;80:540–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Louapre C, Govindarajan ST, Giannì C, Madigan N, Sloane JA, Treaba CA, et al. Heterogeneous pathological processes account for thalamic degeneration in multiple sclerosis: Insights from 7 T imaging. Mult Scler. 2017;1352458517726382.

  12. Kuchling J, Sinnecker T, Bozin I, Dörr J, Madai VI, Sobesky J, et al. Ultrahigh field MRI in context of neurological diseases. Nervenarzt. 2014.

  13. Sinnecker T, Kuchling J, Dusek P, Dörr J, Niendorf T, Paul F, et al. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J. 2015;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kuchling J, Ramien C, Bozin I, Dörr J, Harms L, Rosche B, et al. Identical lesion morphology in primary progressive and relapsing-remitting MS—an ultrahigh field MRI study. Mult Scler 2014.

  15. Müller K, Kuchling J, Dörr J, Harms L, Ruprecht K, Niendorf T, et al. Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. J Neurol. 2014;261:2032–6.

    Article  PubMed  Google Scholar 

  16. Sinnecker T, Dörr J, Pfueller CF, Harms L, Ruprecht K, Jarius S, et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology. 2012;79:708–14.

    Article  PubMed  Google Scholar 

  17. Wuerfel J, Sinnecker T, Ringelstein EB, Jarius S, Schwindt W, Niendorf T, et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler. 2012;18:1592–9.

    Article  PubMed  Google Scholar 

  18. Bozin I, Ge Y, Kuchling J, Dusek P, Chawla S, Harms L, et al. Magnetic resonance phase alterations in multiple sclerosis patients with short and long disease duration. PloS One. 2015;10:e0128386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sumowski JF, Leavitt VM, Rocca MA, Inglese M, Riccitelli G, Buyukturkoglu K, et al. Mesial temporal lobe and subcortical grey matter volumes differentially predict memory across stages of multiple sclerosis. Mult Scler. 2017;1352458517708873.

  20. González Torre JA, Cruz-Gómez ÁJ, Belenguer A, Sanchis-Segura C, Ávila C, Forn C. Hippocampal dysfunction is associated with memory impairment in multiple sclerosis: a volumetric and functional connectivity study. Mult Scler. 2017;23:1854–63.

    Article  PubMed  Google Scholar 

  21. Longoni G, Rocca MA, Pagani E, Riccitelli GC, Colombo B, Rodegher M, et al. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS. Brain Struct Funct. 2015;220:435–44.

    Article  PubMed  Google Scholar 

  22. Saygin ZM, Kliemann D, Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. NeuroImage. 2017;155:370–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Makowski C, Béland S, Kostopoulos P, Bhagwat N, Devenyi GA, Malla AK, et al. Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation. NeuroImage 2017.

  24. Harrison DM, Oh J, Roy S, Wood ET, Whetstone A, Seigo MA, et al. Thalamic lesions in multiple sclerosis by 7 T MRI: Clinical implications and relationship to cortical pathology. Mult Scler 2015.

  25. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11:805–21.

    Article  PubMed  CAS  Google Scholar 

  26. Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005;26:839–51.

    Article  PubMed  Google Scholar 

  27. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage. 2002;17:479–89.

    Article  PubMed  Google Scholar 

  28. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23(Suppl 1):S208–19.

    Article  PubMed  Google Scholar 

  29. Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. NeuroImage. 2004;23(Suppl 1):S69–84.

    Article  PubMed  Google Scholar 

  30. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  PubMed  CAS  Google Scholar 

  31. Zijdenbos A, Forghani R, Evans A. Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT. Med Image Comput Comput-Assist Interv — MICCAI’98 [Internet]. Springer, Berlin, Heidelberg; 1998 [cited 2018 Jan 15]. p. 439–48. Available from: https://link.springer.com/chapter/10.1007/BFb0056229.

  32. Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. NeuroImage. 2010;53:1181–96.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pelletier D, Garrison K, Henry R. Measurement of whole-brain atrophy in multiple sclerosis. J Neuroimaging. 2004;14:11S–9S.

    Article  PubMed  Google Scholar 

  34. Steenwijk MD, Amiri H, Schoonheim MM, de Sitter A, Barkhof F, Pouwels PJW, et al. Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. NeuroImage Clin. 2017;15:843–53.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, et al. Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. Am J Neuroradiol. 2012;33:1918–24.

    Article  PubMed  CAS  Google Scholar 

  36. Jovicich J, Marizzoni M, Sala-Llonch R, Bosch B, Bartrés-Faz D, Arnold J, et al. Brain morphometry reproducibility in multi-center 3 T MRI studies: a comparison of cross-sectional and longitudinal segmentations. NeuroImage. 2013;83:472–84.

    Article  PubMed  Google Scholar 

  37. Popescu V, Agosta F, Hulst HE, Sluimer IC, Knol DL, Sormani MP, et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:1082–91.

    Article  PubMed  Google Scholar 

  38. Filippi M, Preziosa P, Copetti M, Riccitelli G, Horsfield MA, Martinelli V, et al. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology. 2013;81:1759–67.

    Article  PubMed  Google Scholar 

  39. Jacobsen C, Hagemeier J, Myhr K-M, Nyland H, Lode K, Bergsland N, et al. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry. 2014;85:1109–15.

    Article  PubMed  Google Scholar 

  40. Battaglini M, Jenkinson M, De Stefano N. Alzheimer’s Disease Neuroimaging Initiative. SIENA-XL for improving the assessment of gray and white matter volume changes on brain MRI. Hum Brain Mapp. 2017.

  41. Nakamura K, Guizard N, Fonov VS, Narayanan S, Collins DL, Arnold DL. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis. NeuroImage Clin. 2013;4:10–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Popescu V, Schoonheim MM, Versteeg A, Chaturvedi N, Jonker M, Xavier de Menezes R, et al. Grey matter atrophy in multiple sclerosis: clinical interpretation depends on choice of analysis method. PloS One. 2016;11:e0143942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Audoin B, Zaaraoui W, Reuter F, Rico A, Malikova I, Confort-Gouny S, et al. Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010;81:690–5.

    Article  PubMed  Google Scholar 

  44. Van Munster CEP, Jonkman LE, Weinstein HC, Uitdehaag BMJ, Geurts JJG. Gray matter damage in multiple sclerosis: Impact on clinical symptoms. Neuroscience. 2015;303:446–61.

    Article  PubMed  CAS  Google Scholar 

  45. Schoonheim MM, Popescu V, Rueda Lopes FC, Wiebenga OT, Vrenken H, Douw L, et al. Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology. 2012;79:1754–61.

    Article  PubMed  Google Scholar 

  46. Benedict RHB, Ramasamy D, Munschauer F, Weinstock-Guttman B, Zivadinov R. Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry. 2009;80:201–6.

    Article  PubMed  CAS  Google Scholar 

  47. Ceccarelli A, Rocca MA, Pagani E, Colombo B, Martinelli V, Comi G, et al. A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. NeuroImage. 2008;42:315–22.

    Article  PubMed  Google Scholar 

  48. Vidal-Jordana A, Sastre-Garriga J, Rovira A, Montalban X. Treating relapsing–remitting multiple sclerosis: therapy effects on brain atrophy. J Neurol. 2015;262:2617–26.

    Article  PubMed  Google Scholar 

  49. Radü EW, Bendfeldt K, Mueller-Lenke N, Magon S, Sprenger T. Brain atrophy: an in-vivo measure of disease activity in multiple sclerosis. Swiss Med Wkly. 2013;143:w13887.

    PubMed  Google Scholar 

  50. Branger P, Parienti J-J, Sormani MP, Defer G. The effect of disease-modifying drugs on brain atrophy in relapsing-remitting multiple sclerosis: a meta-analysis. PLoS ONE [Internet]. 2016;11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794160/.

  51. Tsivgoulis G, Katsanos AH, Grigoriadis N, Hadjigeorgiou GM, Heliopoulos I, Kilidireas C et al. The effect of disease modifying therapies on brain atrophy in patients with relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. PLoS ONE [Internet]. 2015;10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355592/.

  52. Tsivgoulis G, Katsanos AH, Grigoriadis N, Hadjigeorgiou GM, Heliopoulos I, Papathanasopoulos P, et al. The effect of disease-modifying therapies on brain atrophy in patients with clinically isolated syndrome: a systematic review and meta-analysis. Ther Adv Neurol Disord. 2015;8:193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  53. •• Sormani MP, Arnold DL, De Stefano N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol. 2014;75:43–9. This important meta-analysis of 13 trials including > 13,500 patients studied the treatment effect of current therapies on brain atrophy. It was observed that a positive treatment effect on brain atrophy correlates with a treatment effect on disability—an association that was independent from lesion-based MRI measures.

    Article  PubMed  Google Scholar 

  54. Kappos L, De Stefano N, Freedman MS, Cree BA, Radue E-W, Sprenger T, et al. Inclusion of brain volume loss in a revised measure of “no evidence of disease activity” (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016;22:1297–305.

    Article  PubMed  Google Scholar 

  55. De Bresser J, Portegies MP, Leemans A, Biessels GJ, Kappelle LJ, Viergever MA. A comparison of MR based segmentation methods for measuring brain atrophy progression. NeuroImage. 2011;54:760–8.

    Article  PubMed  Google Scholar 

  56. Smeets D, Ribbens A, Sima DM, Cambron M, Horakova D, Jain S, et al. Reliable measurements of brain atrophy in individual patients with multiple sclerosis. Brain Behav. 2016;6:e00518.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Altmann DR, Jasperse B, Barkhof F, Beckmann K, Filippi M, Kappos LD, et al. Sample sizes for brain atrophy outcomes in trials for secondary progressive multiple sclerosis. Neurology. 2009;72:595–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Iscan Z, Jin TB, Kendrick A, Szeglin B, Lu H, Trivedi M, et al. Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Hum Brain Mapp. 2015;36:3472–85.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fellhauer I, Zöllner FG, Schröder J, Degen C, Kong L, Essig M, et al. Comparison of automated brain segmentation using a brain phantom and patients with early Alzheimer’s dementia or mild cognitive impairment. Psychiatry Res Neuroimaging. 2015;233:299–305.

    Article  Google Scholar 

  60. Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, van Os J, et al. The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLOS ONE. 2012;7:e38234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Duning T, Kloska S, Steinsträter O, Kugel H, Heindel W, Knecht S. Dehydration confounds the assessment of brain atrophy. Neurology. 2005;64:548–50.

    Article  PubMed  CAS  Google Scholar 

  62. Nakamura K, Brown RA, Araujo D, Narayanan S, Arnold DL. Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: Implications for monitoring atrophy in clinical studies. NeuroImage Clin. 2014;6:166–70.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maclaren J, Han Z, Vos SB, Fischbein N, Bammer R. Reliability of brain volume measurements: A test-retest dataset. Sci Data. 2014;1:140037.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H, Smith S, et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology. 2005;64:1704–11.

    Article  PubMed  CAS  Google Scholar 

  65. • Stefano ND, Stromillo ML, Giorgio A, Bartolozzi ML, Battaglini M, Baldini M, et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015; https://doi.org/10.1136/jnnp-2014-309903. This study is of interest since it aims to establish pathological cut-offs of brain atrophy rates in multiple sclerosis that are needed to pave the way towards clinical application of brain volume measurements.

  66. Barkhof F. Brain atrophy measurements should be used to guide therapy monitoring in MS – NO. Mult Scler J. 2016;22:1524–6.

    Article  Google Scholar 

  67. Group on behalf of the M study, Wattjes MP, Rovira À, Miller D, Yousry TA, Sormani MP, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11:597.

    Article  CAS  Google Scholar 

  68. Zivadinov R, Dwyer MG, Bergsland N. Brain atrophy measurements should be used to guide therapy monitoring in MS – YES. Mult Scler J. 2016;22:1522–4.

    Article  Google Scholar 

  69. De Stefano N, Arnold DL. Towards a better understanding of pseudoatrophy in the brain of multiple sclerosis patients. Mult Scler. 2015;21:675–6.

    Article  PubMed  Google Scholar 

  70. De Stefano N, Airas L, Grigoriadis N, Mattle HP, O’Riordan J, Oreja-Guevara C, et al. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs. 2014;28:147–56.

    Article  PubMed  Google Scholar 

  71. Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F, Tur C, Tintoré M, Horga A, et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013;19:1175–81.

    Article  PubMed  CAS  Google Scholar 

  72. Zivadinov R, Reder AT, Filippi M, Minagar A, Stüve O, Lassmann H, et al. Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology. 2008;71:136–44.

    Article  PubMed  CAS  Google Scholar 

  73. Paolillo A, Piattella MC, Pantano P, Di Legge S, Caramia F, Russo P, et al. The relationship between inflammation and atrophy in clinically isolated syndromes suggestive of multiple sclerosis: a monthly MRI study after triple-dose gadolinium-DTPA. J Neurol. 2004;251:432–9.

    Article  PubMed  Google Scholar 

  74. • Sastre-Garriga J, Tur C, Pareto D, Vidal-Jordana A, Auger C, Río J, et al. Brain atrophy in natalizumab-treated patients: A 3-year follow-up. Mult Scler. 2015;21:749–56. Pseudoatrophy is a key factor for the interpretation of brain volume changes. This study leads to a better understanding of pseudoatrophy since an effect of baseline inflammation on brain volume measures was observed for up to 24 months after natalizumab initiation.

    Article  PubMed  CAS  Google Scholar 

  75. Barkhof F, Simon JH, Fazekas F, Rovaris M, Kappos L, de Stefano N, et al. MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat Rev Neurol. 2011;8:13–21.

    Article  PubMed  Google Scholar 

  76. Perlaki G, Horvath R, Nagy SA, Bogner P, Doczi T, Janszky J, et al. Comparison of accuracy between FSL’s FIRST and Freesurfer for caudate nucleus and putamen segmentation. Sci Rep. 2017;7:2418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Derakhshan M, Caramanos Z, Giacomini PS, Narayanan S, Maranzano J, Francis SJ, et al. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. NeuroImage. 2010;52:1261–7.

    Article  PubMed  Google Scholar 

  78. Pagani E, Rocca MA, Gallo A, Rovaris M, Martinelli V, Comi G, et al. Regional brain atrophy evolves differently in patients with multiple sclerosis according to clinical phenotype. Am J Neuroradiol. 2005;26:341–6.

    PubMed  Google Scholar 

  79. Zivadinov R, Havrdová E, Bergsland N, Tyblova M, Hagemeier J, Seidl Z, et al. Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology. 2013;268:831–41.

    Article  PubMed  Google Scholar 

  80. Till C, Ghassemi R, Aubert-Broche B, Kerbrat A, Collins DL, Narayanan S, et al. MRI correlates of cognitive impairment in childhood-onset multiple sclerosis. Neuropsychology. 2011;25:319–32.

    Article  PubMed  CAS  Google Scholar 

  81. Papathanasiou A, Messinis L, Zampakis P, Panagiotakis G, Gourzis P, Georgiou V, et al. Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status. J Neurol Sci. 2015;358:236–42.

    Article  PubMed  Google Scholar 

  82. Preziosa P, Rocca MA, Pagani E, Stromillo ML, Enzinger C, Gallo A, et al. Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: a multicenter study. Hum Brain Mapp. 2016;37:1627–44.

    Article  PubMed  Google Scholar 

  83. Wen J, Yablonskiy DA, Salter A, Cross AH. Limbic system damage in MS: MRI assessment and correlations with clinical testing. PloS One. 2017;12:e0187915.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Koenig KA, Sakaie KE, Lowe MJ, Lin J, Stone L, Bermel RA, et al. Hippocampal volume is related to cognitive decline and fornicial diffusion measures in multiple sclerosis. Magn Reson Imaging. 2014;32:354–8.

    Article  PubMed  Google Scholar 

  85. Damjanovic D, Valsasina P, Rocca MA, Stromillo ML, Gallo A, Enzinger C, et al. Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: a multicenter study. AJNR Am J Neuroradiol. 2017;38:18–24.

    Article  PubMed  CAS  Google Scholar 

  86. Engvig A, Fjell AM, Westlye LT, Skaane NV, Sundseth Ø, Walhovd KB. Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. NeuroImage. 2012;61:188–94.

    Article  PubMed  Google Scholar 

  87. Rocca MA, Morelli ME, Amato MP, Moiola L, Ghezzi A, Veggiotti P, et al. Regional hippocampal involvement and cognitive impairment in pediatric multiple sclerosis. Mult Scler. 2016;22:628–40.

    Article  PubMed  Google Scholar 

  88. Batista S. d’ Almeida OC, Afonso A, Freitas S, Macário C, Sousa L, et al. Impairment of social cognition in multiple sclerosis: Amygdala atrophy is the main predictor. Mult Scler. 2017;23:1358–66.

    Article  PubMed  Google Scholar 

  89. Kidd D, Thorpe JW, Thompson AJ, Kendall BE, Moseley IF, MacManus DG, et al. Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology. 1993;43:2632–7.

    Article  PubMed  CAS  Google Scholar 

  90. Lin X, Tench CR, Evangelou N, Jaspan T, Constantinescu CS. Measurement of spinal cord atrophy in multiple sclerosis. J Neuroimaging. 2004;14:20S–6S.

    Article  PubMed  Google Scholar 

  91. Ganter P, Prince C, Esiri MM. Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol. 1999;25:459–67.

    Article  PubMed  CAS  Google Scholar 

  92. Bjartmar C, Kidd G, Mörk S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. 2000;48:893–901.

    Article  PubMed  CAS  Google Scholar 

  93. DeLuca GC, Ebers GC, Esiri MM. Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain. 2004;127:1009–18.

    Article  PubMed  CAS  Google Scholar 

  94. Gilmore CP, DeLuca GC, Bö L, Owens T, Lowe J, Esiri MM, et al. Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol. 2009;19:642–9.

    Article  PubMed  Google Scholar 

  95. Bot JCJ, Blezer ELA, Kamphorst W, Lycklama A, Nijeholt GJ, Ader HJ, et al. The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MR imaging findings to histopathologic results. Radiology. 2004;233:531–40.

    Article  PubMed  Google Scholar 

  96. Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology. 2006;67:960–7.

    Article  PubMed  CAS  Google Scholar 

  97. Liu Y, Lukas C, Steenwijk MD, Daams M, Versteeg A, Duan Y, et al. Multicenter validation of mean upper cervical cord area measurements from head 3D T1-weighted MR imaging in patients with multiple sclerosis. AJNR Am J Neuroradiol. 2016;37:749–54.

    Article  PubMed  CAS  Google Scholar 

  98. Dietrich O, Reiser MF, Schoenberg SO. Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol. 2008;65:29–35.

    Article  PubMed  Google Scholar 

  99. Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, et al. The current state-of-the-art of spinal cord imaging: methods. NeuroImage. 2014;84:1070–81.

    Article  PubMed  CAS  Google Scholar 

  100. Kearney H, Miszkiel KA, Yiannakas MC, Ciccarelli O, Miller DH. A pilot MRI study of white and grey matter involvement by multiple sclerosis spinal cord lesions. Mult Scler Relat Disord. 2013;2:103–8.

    Article  PubMed  CAS  Google Scholar 

  101. Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CAM, Altmann DR, Ciccarelli O, et al. Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging JMRI. 2014;39:617–23.

    Article  PubMed  Google Scholar 

  102. Papinutto N, Schlaeger R, Panara V, Caverzasi E, Ahn S, Johnson KJ, et al. 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times. J Magn Reson Imaging JMRI. 2015;42:698–708.

    Article  PubMed  Google Scholar 

  103. Yiannakas MC, Kakar P, Hoy LR, Miller DH, Wheeler-Kingshott CAM. The use of the lumbosacral enlargement as an intrinsic imaging biomarker: feasibility of grey matter and white matter cross-sectional area measurements using MRI at 3 T. PloS ONE. 2014;9:e105544.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yiannakas MC, Kearney H, Samson RS, Chard DT, Ciccarelli O, Miller DH, et al. Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. NeuroImage. 2012;63:1054–9.

    Article  PubMed  CAS  Google Scholar 

  105. Taso M, Le Troter A, Sdika M, Ranjeva J-P, Guye M, Bernard M, et al. Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results. Magma. 2014;27:257–67.

    Article  PubMed  CAS  Google Scholar 

  106. • Weigel M, Bieri O. Spinal cord imaging using averaged magnetization inversion recovery acquisitions. Magn Reson Med. 2017; A novel approach for fast high-resolution spinal cord (SC) imaging with improved GM/WM contrast using averaged magnetization inversion recovery acquisitions (AMIRA).

  107. Losseff NA, Webb SL, O’Riordan JI, Page R, Wang L, Barker GJ, et al. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996;119(Pt 3):701–8.

    Article  PubMed  Google Scholar 

  108. Hickman SJ, Hadjiprocopis A, Coulon O, Miller DH, Barker GJ. Cervical spinal cord MTR histogram analysis in multiple sclerosis using a 3D acquisition and a B-spline active surface segmentation technique. Magn Reson Imaging. 2004;22:891–5.

    Article  PubMed  CAS  Google Scholar 

  109. Tench CR, Morgan PS, Constantinescu CS. Measurement of cervical spinal cord cross-sectional area by MRI using edge detection and partial volume correction. J Magn Reson Imaging JMRI. 2005;21:197–203.

    Article  PubMed  Google Scholar 

  110. Zivadinov R, Banas AC, Yella V, Abdelrahman N, Weinstock-Guttman B, Dwyer MG. Comparison of three different methods for measurement of cervical cord atrophy in multiple sclerosis. AJNR Am J Neuroradiol. 2008;29:319–25.

    Article  PubMed  CAS  Google Scholar 

  111. Horsfield MA, Sala S, Neema M, Absinta M, Bakshi A, Sormani MP, et al. Rapid semi-automatic segmentation of the spinal cord from magnetic resonance images: application in multiple sclerosis. NeuroImage. 2010;50:446–55.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bergo FPG, França MC, Chevis CF, Cendes F. SpineSeg: A segmentation and measurement tool for evaluation of spinal cord atrophy. 7th Iber Conf Inf Syst Technol CISTI 2012. 2012. p. 1–4.

  113. Chen M, Carass A, Oh J, Nair G, Pham DL, Reich DS, et al. Automatic magnetic resonance spinal cord segmentation with topology constraints for variable fields of view. NeuroImage. 2013;83:1051–62.

    Article  PubMed  Google Scholar 

  114. De Leener B, Kadoury S, Cohen-Adad J. Robust, accurate and fast automatic segmentation of the spinal cord. NeuroImage. 2014;98:528–36.

    Article  PubMed  Google Scholar 

  115. Asman AJ, Bryan FW, Smith SA, Reich DS, Landman BA. Groupwise multi-atlas segmentation of the spinal cord’s internal structure. Med Image Anal. 2014;18:460–71.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Taso M, Le Troter A, Sdika M, Cohen-Adad J, Arnoux P-J, Guye M, et al. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age. NeuroImage. 2015;117:20–8.

    Article  PubMed  Google Scholar 

  117. El Mendili M-M, Chen R, Tiret B, Pélégrini-Issac M, Cohen-Adad J, Lehéricy S, et al. Validation of a semiautomated spinal cord segmentation method. J Magn Reson Imaging JMRI. 2015;41:454–9.

    Article  PubMed  Google Scholar 

  118. De Leener B, Taso M, Cohen-Adad J, Callot V. Segmentation of the human spinal cord. Magma. 2016;29:125–53.

    Article  PubMed  Google Scholar 

  119. Prados F, Cardoso MJ, Yiannakas MC, Hoy LR, Tebaldi E, Kearney H, et al. Fully automated grey and white matter spinal cord segmentation. Sci Rep. 2016;6:36151.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Brosch T, Tang LYW, Yoo Y, Li DK, Traboulsee A, Tam R. Deep 3D Convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging. 2016;35:1229–39.

    Article  PubMed  Google Scholar 

  121. Datta E, Papinutto N, Schlaeger R, Zhu A, Carballido-Gamio J, Henry RG. Gray matter segmentation of the spinal cord with active contours in MR images. NeuroImage. 2017;147:788–99.

    Article  PubMed  Google Scholar 

  122. Dupont SM, De Leener B, Taso M, Le Troter A, Nadeau S, Stikov N, et al. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. NeuroImage. 2017;150:358–72.

    Article  PubMed  Google Scholar 

  123. De Leener B, Lévy S, Dupont SM, Fonov VS, Stikov N, Louis Collins D, et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage. 2017;145:24–43.

    Article  PubMed  Google Scholar 

  124. • Prados F, Ashburner J, Blaiotta C, Brosch T, Carballido-Gamio J, Cardoso MJ, et al. Spinal cord grey matter segmentation challenge. Neuroimage. 2017;152:312–29. This study gives an overview on-state-of-the-art spinal cord GM /WM segmentation strategies.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rashid W, Davies GR, Chard DT, Griffin CM, Altmann DR, Gordon R, et al. Upper cervical cord area in early relapsing-remitting multiple sclerosis: cross-sectional study of factors influencing cord size. J Magn Reson Imaging JMRI. 2006;23:473–6.

    Article  PubMed  Google Scholar 

  126. Song F, Huan Y, Yin H, Ge Y, Wei G, Chang Y, et al. Normalized upper cervical spinal cord atrophy in multiple sclerosis. J Neuroimaging. 2008;18:320–7.

    Article  PubMed  Google Scholar 

  127. Healy BC, Arora A, Hayden DL, Ceccarelli A, Tauhid SS, Neema M, et al. Approaches to normalization of spinal cord volume: application to multiple sclerosis. J Neuroimaging. 2012;22:e12–9.

    Article  PubMed  Google Scholar 

  128. Engl C, Schmidt P, Arsic M, Boucard CC, Biberacher V, Röttinger M, et al. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI. Neuroradiology. 2013;55:963–70.

    Article  PubMed  Google Scholar 

  129. Kalkers NF, Barkhof F, Bergers E, van Schijndel R, Polman CH. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler J. 2002;8:532–3.

    Article  CAS  Google Scholar 

  130. Lin X, Tench CR, Turner B, Blumhardt LD, Constantinescu CS. Spinal cord atrophy and disability in multiple sclerosis over four years: application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon beta-1a (Rebif) treatment trial. J Neurol Neurosurg Psychiatry. 2003;74:1090–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Leary SM, Miller DH, Stevenson VL, Brex PA, Chard DT, Thompson AJ. Interferon beta-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology. 2003;60:44–51.

    Article  PubMed  CAS  Google Scholar 

  132. Bieniek M, Altmann DR, Davies GR, Ingle GT, Rashid W, Sastre-Garriga J, et al. Cord atrophy separates early primary progressive and relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2006;77:1036–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Montalban X, Sastre-Garriga J, Tintoré M, Brieva L, Aymerich FX, Río J, et al. A single-center, randomized, double-blind, placebo-controlled study of interferon beta-1b on primary progressive and transitional multiple sclerosis. Mult Scler. 2009;15:1195–205.

    Article  PubMed  CAS  Google Scholar 

  134. Rocca MA, Horsfield MA, Sala S, Copetti M, Valsasina P, Mesaros S, et al. A multicenter assessment of cervical cord atrophy among MS clinical phenotypes. Neurology. 2011;76:2096–102.

    Article  PubMed  CAS  Google Scholar 

  135. Bonati U, Fisniku LK, Altmann DR, Yiannakas MC, Furby J, Thompson AJ, et al. Cervical cord and brain grey matter atrophy independently associate with long-term MS disability. J Neurol Neurosurg Psychiatry. 2011;82:471–2.

    Article  PubMed  CAS  Google Scholar 

  136. Kearney H, Rocca M, Valsasina P, Balk L, Sastre-Garriga J, Reinhardt J, et al. Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler. 2014;20:72–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Brex P, Leary S, O’Riordan J, Miszkiel K, Plant G, Thompson A, et al. Measurement of spinal cord area in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2001;70:544–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Akkad DA, Bellenberg B, Esser S, Weiler F, Epplen JT, Gold R, et al. Multiple sclerosis risk loci correlate with cervical cord atrophy and may explain the course of disability. Neurogenetics. 2015;16:161–8.

    Article  PubMed  Google Scholar 

  139. Daams M, Weiler F, Steenwijk MD, Hahn HK, Geurts JJ, Vrenken H, et al. Mean upper cervical cord area (MUCCA) measurement in long-standing multiple sclerosis: relation to brain findings and clinical disability. Mult Scler. 2014;20:1860–5.

    Article  PubMed  Google Scholar 

  140. Lukas C, Knol DL, Sombekke MH, Bellenberg B, Hahn HK, Popescu V, et al. Cervical spinal cord volume loss is related to clinical disability progression in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86:410–8.

    Article  PubMed  Google Scholar 

  141. Aymerich FX, Auger C, Alonso J, Alberich M, Sastre-Garriga J, Tintoré M, et al. Cervical cord atrophy and long-term disease progression in patients with primary-progressive multiple sclerosis. AJNR Am J Neuroradiol 2017.

  142. Stevenson VL, Miller DH, Leary SM, Rovaris M, Barkhof F, Brochet B, et al. One year follow up study of primary and transitional progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2000;68:713–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kapoor R, Furby J, Hayton T, Smith KJ, Altmann DR, Brenner R, et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol. 2010;9:681–8.

    Article  PubMed  CAS  Google Scholar 

  144. Dupuy SL, Khalid F, Healy BC, Bakshi S, Neema M, Tauhid S, et al. The effect of intramuscular interferon beta-1a on spinal cord volume in relapsing-remitting multiple sclerosis. BMC Med Imaging. 2016;16:56.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Singhal T, Tauhid S, Hurwitz S, Neema M, Bakshi R. The Effect of Glatiramer Acetate on Spinal Cord Volume in Relapsing-Remitting Multiple Sclerosis. J Neuroimaging. 2017;27:33–6.

    Article  PubMed  Google Scholar 

  146. ClinicalTrials.gov Identifier NCT02959658.

  147. Kearney H, Miller DH, Ciccarelli O. Spinal cord MRI in multiple sclerosis--diagnostic, prognostic and clinical value. Nat Rev. Neurol. 2015;11:327–38.

    Article  PubMed  Google Scholar 

  148. Cawley N, Tur C, Prados F, Plantone D, Kearney H, Abdel-Aziz K, et al. Spinal cord atrophy as a primary outcome measure in phase II trials of progressive multiple sclerosis. Mult Scler. 2017;1352458517709954.

  149. Lukas C, Bellenberg B, Hahn HK, Rexilius J, Drescher R, Hellwig K, et al. Benefit of repetitive intrathecal triamcinolone acetonide therapy in predominantly spinal multiple sclerosis: prediction by upper spinal cord atrophy. Ther Adv Neurol Disord. 2009;2:42–9.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schlaeger R, Papinutto N, Zhu A et al. Spinal cord gray matter atrophy is detectable at an early stage of multiple sclerosis. AAN, Boston, 2017. S2.003.

  151. Schlaeger R, Papinutto N, Zhu AH, Lobach IV, Bevan CJ, Bucci M, et al. Association Between Thoracic Spinal Cord Gray Matter Atrophy and Disability in Multiple Sclerosis. JAMA Neurol. 2015;72:897–904.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Schlaeger R, Papinutto N, Panara V, Bevan C, Lobach IV, Bucci M, et al. Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol. 2014;76:568–80.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Plantinga BR, Temel Y, Roebroeck A, Uludağ K, Ivanov D, Kuijf ML, et al. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures. Front Hum Neurosci. 2014;8:876.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ide S, Kakeda S, Korogi Y, Yoneda T, Nishimura J, Sato T, et al. Delineation of optic radiation and stria of Gennari on high-resolution phase difference enhanced imaging. Acad Radiol. 2012;19:1283–9.

    Article  PubMed  Google Scholar 

  155. Sakaie K, Takahashi M, Sagiyama K, Dimitrov I, Frohman T, Remington G, et al. Injury to a specific neural pathway detected by ultra-high-field MRI. Neurology. 2014;82:182–3.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sinnecker T, Oberwahrenbrock T, Metz I, Zimmermann H, Pfueller CF, Harms L, et al. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning—an ultrahigh-field MR pilot study. Eur Radiol. 2015;25:122–31.

    Article  PubMed  Google Scholar 

  157. Kitajima M, Korogi Y, Takahashi M, Eto K. MR signal intensity of the optic radiation. AJNR Am J Neuroradiol. 1996;17:1379–83.

    PubMed  CAS  Google Scholar 

  158. Reich DS, Smith SA, Gordon-Lipkin EM, Ozturk A, Caffo BS, Balcer LJ, et al. Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol. 2009;66:998–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Boutet C, Chupin M, Lehéricy S, Marrakchi-Kacem L, Epelbaum S, Poupon C, et al. Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: a feasibility study. NeuroImage Clin. 2014;5:341–8.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Goubran M, Rudko DA, Santyr B, Gati J, Szekeres T, Peters TM, et al. In vivo normative atlas of the hippocampal subfields using multi-echo susceptibility imaging at 7 Tesla. Hum Brain Mapp. 2014;35:3588–601.

    Article  PubMed  Google Scholar 

  161. McKiernan EF, O’Brien JT. 7 T MRI for neurodegenerative dementias in vivo: a systematic review of the literature. J Neurol Neurosurg Psychiatry. 2017;88:564–74.

    Article  PubMed  Google Scholar 

  162. Santyr BG, Goubran M, Lau JC, Kwan BYM, Salehi F, Lee DH, et al. Investigation of hippocampal substructures in focal temporal lobe epilepsy with and without hippocampal sclerosis at 7 T. J Magn Reson Imaging JMRI. 2017;45:1359–70.

    Article  PubMed  Google Scholar 

  163. Voets NL, Hodgetts CJ, Sen A, Adcock JE, Emir U. Hippocampal MRS and subfield volumetry at 7 T detects dysfunction not specific to seizure focus. Sci Rep. 2017;7:16138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Wang X-Y, Zhao L, Yu T, Qiao L, Ni D-Y, Zhang G-J, et al. Assessment of Age-related morphometric changes of subcortical structures in healthy people using ultra-high field 7 Tesla magnetic resonance imaging. Front Aging Neurosci. 2016;8:224.

    PubMed  PubMed Central  Google Scholar 

  165. Xiao Y, Zitella LM, Duchin Y, Teplitzky BA, Kastl D, Adriany G, et al. Multimodal 7 T imaging of thalamic nuclei for preclinical deep brain stimulation applications. Front Neurosci. 2016;10:264.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele P-F, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49:1271–81.

    Article  PubMed  Google Scholar 

  167. Belaroussi B, Milles J, Carme S, Zhu YM, Benoit-Cattin H. Intensity non-uniformity correction in MRI: existing methods and their validation. Med Image Anal. 2006;10:234–46.

    Article  PubMed  Google Scholar 

  168. Seiger R, Hahn A, Hummer A, Kranz GS, Ganger S, Küblböck M, et al. Voxel-based morphometry at ultra-high fields. A comparison of 7 T and 3 T MRI data. NeuroImage. 2015;113:207–16.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Fujimoto K, Polimeni JR, van der Kouwe AJW, Reuter M, Kober T, Benner T, et al. Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. NeuroImage. 2014;90:60–73.

    Article  PubMed  Google Scholar 

  170. Louapre C, Govindarajan ST, Giannì C, Langkammer C, Sloane JA, Kinkel RP, et al. Beyond focal cortical lesions in MS: An in vivo quantitative and spatial imaging study at 7 T. Neurology. 2015;85:1702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lüsebrink F, Wollrab A, Speck O. Cortical thickness determination of the human brain using high resolution 3 T and 7 T MRI data. NeuroImage. 2013;70:122–31.

    Article  PubMed  Google Scholar 

  172. Bazin P-L, Weiss M, Dinse J, Schäfer A, Trampel R, Turner R. A computational framework for ultra-high resolution cortical segmentation at 7 Tesla. NeuroImage. 2014;93(Pt 2):201–9.

    Article  PubMed  Google Scholar 

  173. Pierpaoli C. Quantitative brain MRI. Top Magn Reson Imaging TMRI. 2010;21:63.

    Article  PubMed  Google Scholar 

  174. Malcolm HL. Spin Dynamics: Basics of Nuclear Magnetic Resonance. 2nd ed. New York: Wiley-Blackwell, 2008; Deoni SC. Methods Mol Biol 2011.

  175. Granziera C, Sprenger T. Brain inflammation, degeneration and plasticity in multiple sclerosis (chapter 109). In: Toga AW, Frackowiak R, editors. Brain Mapping: An Encyclopedic Reference. San Diego: Academic Press; 2015.

    Google Scholar 

  176. Griffin CM, Chard DT, Parker GJM, Barker GJ, Thompson AJ, Miller DH. The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. J Neurol. 2002;249:193–9.

    Article  PubMed  Google Scholar 

  177. Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM. White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. J Neurol. 2002;249:1279–86.

    Article  PubMed  CAS  Google Scholar 

  178. Vrenken H, Geurts JJG, Knol DL, van Dijk LN, Dattola V, Jasperse B, et al. Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology. 2006;240:811–20.

    Article  PubMed  Google Scholar 

  179. Castriota-Scanderbeg A, Fasano F, Filippi M, Caltagirone C. T1 relaxation maps allow differentiation between pathologic tissue subsets in relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler. 2004;10:556–61.

    Article  PubMed  CAS  Google Scholar 

  180. Manfredonia F, Ciccarelli O, Khaleeli Z, Tozer DJ, Sastre-Garriga J, Miller DH, et al. Normal-appearing brain t1 relaxation time predicts disability in early primary progressive multiple sclerosis. Arch Neurol. 2007;64:411–5.

    Article  PubMed  Google Scholar 

  181. Simioni S, Amarù F, Bonnier G, Kober T, Rotzinger D, Du Pasquier R, et al. MP2RAGE provides new clinically-compatible correlates of mild cognitive deficits in relapsing-remitting multiple sclerosis. J Neurol. 2014;261:1606–13.

    Article  PubMed  Google Scholar 

  182. Niepel G, Tench CR, Morgan PS, Evangelou N, Auer DP, Constantinescu CS. Deep gray matter and fatigue in MS: a T1 relaxation time study. J Neurol. 2006;253:896–902.

    Article  PubMed  CAS  Google Scholar 

  183. Neema M, Stankiewicz J, Arora A, Dandamudi VSR, Batt CE, Guss ZD, et al. T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging. 2007;17(Suppl 1):16S–21S.

    Article  PubMed  Google Scholar 

  184. Bonnier G, Roche A, Romascano D, Simioni S, Meskaldji DE, Rotzinger D et al. Multicontrast MRI Quantification of Focal Inflammation and Degeneration in Multiple Sclerosis. BioMed Res Int [Internet]. 2015;2015. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532805/.

  185. Mainero C, Louapre C, Govindarajan ST, Giannì C, Nielsen AS, Cohen-Adad J, et al. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain. 2015;138:932–45.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Louapre C, Govindarajan ST, Giannì C, Madigan N, Nielsen AS, Sloane JA, et al. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7 T MRI. NeuroImage Clin. 2016;12:879–86.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Ontaneda D, Fox RJ. Imaging as an outcome measure in multiple sclerosis. Neurother J Am Soc Exp Neurother. 2017;14:24–34.

    Article  CAS  Google Scholar 

  188. Filippi M, Preziosa P, Rocca MA. Microstructural MR imaging techniques in multiple sclerosis. Neuroimaging Clin N Am. 2017;27:313–33.

    Article  PubMed  Google Scholar 

  189. Brown RA, Narayanan S, Stikov N, Cook S, Cadavid D, Wolansky L, et al. MTR recovery in brain lesions in the BECOME study of glatiramer acetate vs interferon β-1b. Neurology. 2016;87:905–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Arnold DL, Calabresi PA, Kieseier BC, Liu S, You X, Fiore D, et al. Peginterferon beta-1a improves MRI measures and increases the proportion of patients with no evidence of disease activity in relapsing-remitting multiple sclerosis: 2-year results from the ADVANCE randomized controlled trial. BMC Neurol. 2017;17:29.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Arnold DL, Gold R, Kappos L, Bar-Or A, Giovannoni G, Selmaj K, et al. Magnetization transfer ratio in the delayed-release dimethyl fumarate DEFINE study. J Neurol. 2014;261:2429–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Seven Tesla MRI images were created at the Berlin Ultrahigh Field Facility, Max- Delbrueck-Center for Molecular Medicine and NeuroCure, Charité - Universitätsmedizin Berlin, Germany in collaboration with Prof. Thoralf Niendorf and Prof. Friedemann Paul.

The spinal cord AMIRA image was contributed by Dr. Matthias Weigel and Prof. Oliver Bieri, Division of Radiological Physics, Department of Radiology, University Hospital Basel, and Department of Biomedical Engineering, University of Basel, Basel, CH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Schlaeger MD.

Ethics declarations

Conflict of Interest

Cristina Granziera and Regina Schlaeger each declare no conflict of interest.

Tim Sinnecker is an employee at the MIAC AG in Basel, Switzerland.

Jens Wuerfel is CEO of the MIAC AG in Basel, Switzerland and is on the scientific advisory board of Biogen, Novartis, and Roche.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Multiple Sclerosis and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinnecker, T., Granziera, C., Wuerfel, J. et al. Future Brain and Spinal Cord Volumetric Imaging in the Clinic for Monitoring Treatment Response in MS. Curr Treat Options Neurol 20, 17 (2018). https://doi.org/10.1007/s11940-018-0504-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-018-0504-7

Keywords

Navigation