Skip to main content
Log in

Emerging Roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the Regulation of Neural Stem Cells Proliferation and Differentiation

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The molecular mechanisms controlling the specification of neural cell fates have been the focus of intense research in recent years. Neural precursor cells (NPCs) sequentially undergo expansion, neurogenic and gliogenic fates during development, but the underlying mechanisms are poorly understood. Recent studies have identified a number of extrinsic factors that regulate the fate of NPCs. Wnt signaling induces neuronal differentiation of NPCs in an instructive manner. Wnt plays this role in the neurogenic phase of NPCs but not in the early expansion phase, when this pathway promotes proliferation. Likewise, STAT3-activating ligands induce astrocytic differentiation in late gliogenic phase of NPCs but not in the early expansion and neurogenic phases. The mechanisms underlying these remarkable changes in progenitor behaviour and fate during development are not understood, but are thought to include changes in the intrinsic properties of neural progenitors, as well as changes in their signalling environment. PPARs are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily, which activate the transcription of their target genes as heterodimers with retinoid X receptors (RXR). PPARs have been recently involved in NSC acquisition of a specific fate. They have been described to be involved in pathways present also in the control of the proliferation, migration and differentiation of NSC, i.e. Wnt signalling pathway, STAT3 and NFkB pathways. In this review the findings related to PPARs and NSC are reported as well as their possible linkage to other signal transduction pathways involved in NSC specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Doetsch, F., Caille, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  2. Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell, 96, 25–34.

    Article  PubMed  CAS  Google Scholar 

  3. Lendahl, U., Zimmerman, L. B., & McKay, R. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  4. Pevny, L. H., Sockanathan, S., Placzek, M., & Lovell-Badge, R. (1998). A role for SOX1 in neural determination. Development, 125, 1967–1978.

    PubMed  CAS  Google Scholar 

  5. Brazel, C. Y., Limke, T. L., Osborne, J. K., Miura, T., Cai, J., Pevny, L., et al. (2005). Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell, 4, 197–207.

    Article  PubMed  CAS  Google Scholar 

  6. Marzesco, A. M., Janich, P., Wilsch-Bräuninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., et al. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. Journal of Cell Science, 118, 2849–2858.

    Article  PubMed  CAS  Google Scholar 

  7. Sawamoto, K., Nakao, N., Kakishita, K., Ogawa, Y., Toyama, Y., Yamamoto, A., et al. (2001). Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. Journal of Neuroscience, 21, 3895–3903.

    PubMed  CAS  Google Scholar 

  8. Sakakibara, S., Imai, T., Okabe, M., Aruga, J., Nakajima, K., Yasutomi, D., et al. (1996). Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Developments in Biologicals, 176, 230–242.

    Article  CAS  Google Scholar 

  9. Capela, A., & Temple, S. (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron, 35, 865–875.

    Article  PubMed  Google Scholar 

  10. Dihne, M., Bernreuther, C., Sibbe, M., Paulus, W., & Schachner, M. (2003). A new role for the cell adhesion molecule L1 in neural precursor cell proliferation, differentiation, and transmitter-specific subtype generation. Journal of Neuroscience, 23, 6638–6650.

    PubMed  CAS  Google Scholar 

  11. Cai, J., & Cheng, A. (2004). Membrane properties of rat embryonic multipotent neural stem cells. Journal of Neurochemistry, 88, 212–226.

    Article  PubMed  CAS  Google Scholar 

  12. Pennartz, S., Belvindrah, R., Tomiuk, S., Zimmer, C., Hofmann, K., Conradt, M., et al. (2004). Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Molecular and Cellular Neurosciences, 25, 692–706.

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz, P. H., Bryant, P. J., Fuja, T. J., Su, H., O’Dowd, D. K., & Klassen, H. (2003). Isolation and characterization of neural progenitor cells from post-mortem human cortex. Journal of Neuroscience Research, 74, 838–851.

    Article  PubMed  CAS  Google Scholar 

  14. Widera, D., Mikenberg, I., Kaltschmidt, B., & Kaltschmidt, C. (2006). Potential role of NF-kB in adult neural stem cells: the underrated steersman. International Journal of Developmental Neuroscience, 24, 91–102.

    Article  PubMed  CAS  Google Scholar 

  15. Hirabayashi, Y., Itoh, Y., Tabata, H., Nakajima, K., Akiyama, T., Masuyama, N., et al. (2004). The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development, 131, 2791–2801.

    Article  PubMed  CAS  Google Scholar 

  16. Temple, S. (2001). The development of neural stem cells. Nature, 414, 112–117.

    Article  PubMed  CAS  Google Scholar 

  17. Bayer, S. A., & Altman, J. (1999). Neocortical Development, First ed. Raven Press, New York.

  18. Nuclear Receptor Nomenclature Committee (1999). A unified nomenclature system for the nuclear receptor superfamily. Cell, 97, 161–163.

    Article  Google Scholar 

  19. Issemann, I., & Green, S. (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 347, 645–650.

    Article  PubMed  CAS  Google Scholar 

  20. Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., & Wahli, W. (1992). Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 68, 879–887.

    Article  PubMed  CAS  Google Scholar 

  21. Escher, P., & Wahli, W. (2000). Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutation Research, 448, 121–138.

    PubMed  CAS  Google Scholar 

  22. Krey, G., Braissant, O., L’Horset, F., Kalkhoven, E., Perroud, M., & Parker, M. G. (1997). Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator activated receptors by coactivator-dependent receptor ligand assay. Molecular Endocrinology, 11, 779–791.

    Article  PubMed  CAS  Google Scholar 

  23. Berger, J., & Moller, D. E. (2002). The mechanisms of action of PPARs. Annual Review of Medicine, 53, 409–435.

    Article  PubMed  CAS  Google Scholar 

  24. Wolfrum, C., Borrmann, C. M., Borchers, T., & Spener, F. (2001). Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha- and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 98, 2323–2328.

    Article  PubMed  CAS  Google Scholar 

  25. Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., & Wahli, W. (1993). Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor–retinoid X receptor heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 90, 2160–2164.

    Article  PubMed  CAS  Google Scholar 

  26. Gearing, K. L., Gottlicher, M., Teboul, M., Widmark, E., & Gustafsson, J. A. (1993). Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proceedings of the National Academy of Sciences of the United States of America, 90, 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  27. Juge-Aubry, C., Pernin, A., Favez, T., Burger, A. G., Wahli, W., & Meier, C. A. (1997). DNA binding properties of peroxisome proliferator activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 50-flanking region. Journal of Biological Chemistry, 272, 25252–25259.

    Article  PubMed  CAS  Google Scholar 

  28. Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., & Evans, R. M. (1992). Convergence of 9-cis retinoic acid and peroxisome proliferators signalling pathways through heterodimer formation of their receptors. Nature, 358, 771–774.

    Article  PubMed  CAS  Google Scholar 

  29. Issemann, I., Prince, R. A., Tugwood, J. D., & Green, S. (1993). The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. Journal of Molecular Endocrinology, 11, 37–47.

    PubMed  CAS  Google Scholar 

  30. Feige, J. N., Gelman, L., Michalik, L., Desvergne, B., & Wahli, W. (2006). From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in Lipid Research, 45, 120–159.

    Article  PubMed  CAS  Google Scholar 

  31. Guillemot, F. (2007). Cell fate specification in the mammalian telencephalon. Progress in Neurobiology, 83, 37–52.

    Article  PubMed  CAS  Google Scholar 

  32. Garza, J. C., Guo, M., Zhang, W., & Lu, X. Y. (2008). Leptin promotes adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem, [Epub ahead of print]

  33. Doherty, G. H. (2007). Developmental switch in the effects of TNFalpha on ventral midbrain dopaminergic neurons. Neurosciences Research, 57, 296–305.

    Article  CAS  Google Scholar 

  34. Hansen, J. B., Zhang, H., Rasmussen, T. H., Petersen, R. K., Flindt, E. N., & Kristiansen, K. (2001). Peroxisome proliferator-activated receptor delta (PPARdelta)-mediated regulation of preadypocyte proliferation and gene expression os dependent on a cAMP signalling. Journal of Biological Chemistry, 276, 3175–3182.

    Article  PubMed  CAS  Google Scholar 

  35. Saluja, I., Granneman, J. G., & Skoff, R. P. (2001). PPAR delta agonists stimulate oligodendrocyte differentiation in tissue culture. Glia, 33, 191–2004.

    Article  PubMed  CAS  Google Scholar 

  36. Roth, A. D., Leisewitz, A. V., Jung, J. E., Cassina, P., Barbeito, L., Inestrosa, N. C., et al. (2003). PPAR gamma activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. Journal of Neuroscience Research, 72, 425–435.

    Article  PubMed  CAS  Google Scholar 

  37. Cristiano, L., Cimini, A., Moreno, S., Ragnelli, A. M., & Cerù, M. P. (2005). Peroxisome proliferator activated receptor (PPARs) and related transcription factors in differentiating astrocytes. Neuroscience, 131, 577–587.

    Article  PubMed  CAS  Google Scholar 

  38. Cimini, A., Benedetti, E., Cristiano, L., Sebastiani, P., D’Amico, M. A., D’Angelo, B., et al. (2005). Expression of peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RXRs) in rat cortical neurons. Neuroscience, 130, 325–337.

    Article  PubMed  CAS  Google Scholar 

  39. Di Loreto, S., D’Angelo, B., D’Amico, M., Benedetti, E., Cristiano, L., Cinque, B., et al. (2007). PPARb agonists trigger neuronal differentiation in the human neuroblastoma cell line Sh-SY5Y. Journal of Cellular Physiology, 211, 837–847.

    Article  PubMed  CAS  Google Scholar 

  40. Braissant, O., & Wahli, W. (1998). Differential expression of peroxisome proliferator-activated receptor alpha, beta, and gamma during rat embryonic development. Endocrinology, 139, 2748–2754.

    Article  PubMed  CAS  Google Scholar 

  41. Moreno, S., Farioli-Vecchioli, S., & Cerù, M. P. (2004). Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience, 123, 131–145.

    Article  PubMed  CAS  Google Scholar 

  42. Wada, K., Nakajima, A., Katayama, K., Kudo, C., Shibuya, A., Kubota, N., et al. (2006). Peroxisome proliferator-activated receptor g-mediated regulation of neural stem cell proliferation and differentiation. Journal of Biological Chemistry, 81, 12673–12681.

    Article  CAS  Google Scholar 

  43. Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsui, M., Heike, T., et al. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO Journal, 18, 4261–4269.

    Article  PubMed  CAS  Google Scholar 

  44. Cimini, A., Cristiano, L., Benedetti, E., D’Angelo, B., & Cerù, M. P. (2007). PPAR expression in adult mouse neural stem cells (NSC). Modulation of PPARs during astroglial differentiation. PPAR Research, 2007, 48242.

    Article  PubMed  CAS  Google Scholar 

  45. Shi, Y., Hon, M., & Evans, R. M. (2001). The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 99, 2613–2618.

    Article  CAS  Google Scholar 

  46. Peters, J. M., Lee, S. S., Li, W., Ward, J. M., Gavrilova, O., & Everett, C. (2000). Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Molecular and Cellular Biology, 20, 5119–528.

    Article  PubMed  CAS  Google Scholar 

  47. Hansen, J. B., Zhang, H., Rasmussen, T. H., Petersen, R. K., Flindt, E. N., & Kristiansen, K. (2001). Peroxisome proliferator-activated receptor delta (PPARdelta)-mediated regulation of preadypocyte proliferation and gene expression os dependent on a cAMP signalling. Journal of Biological Chemistry, 276, 3175–3182.

    Article  PubMed  CAS  Google Scholar 

  48. Yasugi, E., Horiuchi, A., Uemura, I., Okuma, E., Nakatsu, M., Saeki, K., et al. (2006). Peroxisome proliferator-activated receptor gamma ligands stimulate myeloid differentiation and lipogenensis in human leukemia NB4 cells. Development, Growth & Differentiation, 48, 177–188.

    Article  CAS  Google Scholar 

  49. Zhang, J., Fu, M., Zhu, X., Xiao, Y., Mou, Y., & Zheng, H. (2002). Peroxisome proliferator-activated receptor delta is up-regulated during vascular lesion formation and promotes post-confluent cell proliferation in vascular smooth muscle cells. Journal of Biological Chemistry, 277, 11505–11512.

    Article  PubMed  CAS  Google Scholar 

  50. Hellemans, K., Michalik, L., Dittie, A., Knorr, A., Rombouts, K., & De Jong, J. (2003). Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology, 124, 184–201.

    Article  PubMed  CAS  Google Scholar 

  51. IJpenberg, A., Tan, N. S., Gelman, L., Kersten, S., Seydoux, J., & Xu, J. (2004). In vivo activation of PPAR target genes by RXR homodimers. EMBO Journal, 23, 2083–2091.

    Article  PubMed  CAS  Google Scholar 

  52. Mangelsdorf, D. J., Borgmeyer, U., Heyman, R. A., Zhou, J. Y., Ong, E. S., Oro, A. E., et al. (1992). Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes & Development, 6, 329–344.

    Article  CAS  Google Scholar 

  53. Kamakura, S., Oishi, K., Yoshimatsu, T., Nakafuku, M., Masuyama, N., & Gotoh, Y. (2004). Hes binding to STAT3 mediates crosstalk between Notch and JAKSTAT signaling. Nature Cell Biology, 6, 547–554.

    Article  PubMed  CAS  Google Scholar 

  54. Hirabayashi, Y., & Gotoh, Y. (2005). Stage-dependent fate determination of neural precursor cells in mouse forebrain. Neuroscience Research, 51, 331–336.

    Article  PubMed  CAS  Google Scholar 

  55. Mulholland, D. J., Dedhar, S., Coetzee, G. A., & Nelson, C. C. (2008). Interaction of nuclear receptors with the Wnt/b-catenin/Tcf signaling axis: Wnt you like to know? Endocrine Reviews, 26, 898–915.

    Article  CAS  Google Scholar 

  56. Hirabayashi, Y., Itoh, Y., Tabata, H., Nakajima, K., Akiyama, T., Masuyama, N., et al. (2004). The Wnt/{beta}-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development, 131, 2791–2801.

    Article  PubMed  CAS  Google Scholar 

  57. Hirabayashi, Y., & Gotoh, Y. (2005). Stage-dependent fate determination of neural precursor cells in mouse forebrain. Neuroscience Research, 51, 331–336.

    Article  PubMed  CAS  Google Scholar 

  58. Lu, Q. R., Cai, L., Rowitch, D., Cepko, C. L., & Stiles, C. D. (2001). Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuronal survival in developing mouse cortex. Nature Neuroscience, 4, 973–974.

    Article  PubMed  CAS  Google Scholar 

  59. Lu, Q. R., Yuk, D., Alberta, J. A., Zhu, Z., Pawlitzky, I., Chan, J., et al. (2000). Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron, 25, 317–329.

    Article  PubMed  CAS  Google Scholar 

  60. Gokhan, S., Marin-Husstege, M., Yung, S. Y., Fontanez, D., Casaccia-Bonnefil, P., & Mehler, M. F. (2005). Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. Journal of Neuroscience, 25, 8311–8321.

    Article  PubMed  CAS  Google Scholar 

  61. Mizuguchi, R., Sugimori, M., Takebayashi, H., Kosako, H., Nagao, M., Yoshida, S., et al. (2001). Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of panneuronal and subtype-specific properties of motoneurons. Neuron, 31, 757–771.

    Article  PubMed  CAS  Google Scholar 

  62. Varnat, F., Heggeler, B. B., Grisel, P., Boucard, N., Corthésy-Theulaz, I., Wahli, W., et al. (2006). PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway. Gastroenterology, 131, 538–53.

    Article  PubMed  CAS  Google Scholar 

  63. Schmitz, M. L., Mattioli, I., Buss, H., & Kracht, M. (2004). NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem, 5, 1348–1358.

    Article  PubMed  CAS  Google Scholar 

  64. Widera, D., Holtkamp, W., Entschladen, F., Niggemann, B., Zänker, K., Kaltschmidt, B., et al. (2004). MCP-1 induces migration of adult neural stem cells. European Journal of Cell Biology, 83, 381–387.

    Article  PubMed  CAS  Google Scholar 

  65. Sun, L., Lee, J., & Fine, H. A. (2004). Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. Journal of Clinical Investigation, 113, 1364–1374.

    PubMed  CAS  Google Scholar 

  66. Da Silva, C. A., Heilbock, C., Kassel, O., & Frossard, N. (2003). Transcription of stem cell factor (SCF) is potentiated by glucocorticoids and interleukin-1beta through concerted regulation of a GRE-like and an NF-kappaB response element. FASEB Journal, 17, 2334–2336.

    PubMed  Google Scholar 

  67. Jung, Y., Song, S., & Choi, C. (2008). Peroxisome proliferator activated receptor g agonists suppress TNFa-induced ICAM-1 expression by endothelial cells in a manner potentially dependent on inhibition of reactive oxygen species. Immunology Letters, 117, 63–69.

    Article  PubMed  CAS  Google Scholar 

  68. Bylund, M., Andersson, E., Novitch, B. G., & Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nature Neurosciences, 6, 1162–1168.

    Article  CAS  Google Scholar 

  69. Graham, V., Khudyakov, J., Ellis, P., & Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron, 39, 749–765.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Authors thanks Dr. Elisabetta Benedetti for the critical contribution to the manuscript preparation.

This work has been supported by PRIA 2007 (Prof. Cimini and Prof. Cerù) granted by the Italian Ministry of University and Scientific Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnnaMaria Cimini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimini, A., Cerù, M.P. Emerging Roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the Regulation of Neural Stem Cells Proliferation and Differentiation. Stem Cell Rev 4, 293–303 (2008). https://doi.org/10.1007/s12015-008-9024-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9024-2

Keywords

Navigation