Skip to main content

Advertisement

Log in

Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

11C-Methionine positron emission tomography (MET-PET) has been used to distinguish brain tumor recurrence from radiation necrosis. Because the spatial resolution of conventional PET scanners is low, partial volume effect (PVE) may decrease the detectability of small tumor recurrence. The aim of this study is to investigate the diagnostic value of MET-PET upon semiquantitative analyses in particular PVE-affected small lesions.

Methods

First, we performed a phantom experiment to investigate what size lesion is affected by PVE. This study included 29 patients (33 lesions) suspected of recurrent brain tumors by magnetic resonance imaging (MRI) after radiation therapy. All of them received MET-PET. Semiquantitative analysis was performed using maximum standardized uptake value (SUVmax) and lesion-versus-normal ratio (L/N ratio). ROC analysis was also assessed about the diagnostic value of MET-PET.

Results

From the result of the phantom experiment, lesions smaller than 20 mm in brain mode or smaller than 30 mm in whole-body mode were defined as PVE-affected lesions. Histological analysis or clinical follow-up confirmed the diagnosis of tumor recurrence in 22 lesions, and radiation necrosis in 11 lesions. L/N ratios of recurrence and necrosis for overall lesions were 1.98 ± 0.62 and 1.27 ± 0.28, respectively (p < 0.01). In the PVE-affected lesions, L/N ratio for recurrence (1.72 ± 0.44) was also significantly higher than that for necrosis (1.20 ± 0.11) (p < 0.01). On the ROC analysis for the PVE-affected lesions, the area under the curve for L/N ratio (0.897) was significantly higher than that for SUVmax (0.718) (p < 0.05). These areas under the curve were almost equal to that of overall lesions for L/N ratio (0.886) and for SUVmax (0.738).

Conclusions

Semiquantitative analysis of MET provided high diagnostic value even for PVE-affected small lesions. MET-PET enables early diagnosis of recurrence of brain tumor in the follow-up after the radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH. Brain radiation lesions: MR imaging. Radiology. 1986;158:149–55.

    PubMed  CAS  Google Scholar 

  2. Buchpiguel CA, Alavi JB, Alavi A, Kenyon LC. PET versus SPECT in distinguishing radiation necrosis from tumor recurrence in the brain. J Nucl Med. 1995;36:159–64.

    PubMed  CAS  Google Scholar 

  3. Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007;48:1468–81.

    Article  PubMed  Google Scholar 

  4. Hustinx R, Pourdehnad M, Kaschten B, Alavi A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am. 2005;43:35–47.

    Article  PubMed  Google Scholar 

  5. Bénard F, Romsa J, Hustinx R. Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med. 2003;33:148–62.

    Article  PubMed  Google Scholar 

  6. Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, et al. Diagnosis of recurrent brain tumor: value of 201T1 SPECT vs. 18F-fluorodeoxyglucose PET. AJR. 1994;163:1459–65.

    PubMed  CAS  Google Scholar 

  7. Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Falmen P, et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging. 2005;32:39–51.

    Article  PubMed  CAS  Google Scholar 

  8. Lilja A, Lundqvist H, Olsson Y, Spännare B, Gullberg P, Långström B. Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radiol. 1989;30:121–8.

    Article  PubMed  CAS  Google Scholar 

  9. Viader F, Derlon JM, Petit-Taboué MC, Shishido F, Hubert P, Houtteville JP, et al. Recurrent oligodendroglioma diagnosed with 11C-l-methionine and PET: a case report. Eur Neurol. 1993;33:248–51.

    Article  PubMed  CAS  Google Scholar 

  10. Sonoda Y, Kumabe T, Takahashi T, Shirane R, Yoshimoto T. Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir. 1998;38:342–7.

    Article  CAS  Google Scholar 

  11. Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg. 2003;98:1056–64.

    Article  PubMed  Google Scholar 

  12. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10:1–18.

    Article  PubMed  Google Scholar 

  13. Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci. 2006;15:85–94.

    Article  Google Scholar 

  14. Terakawa Y, Tsuyuguchi N, Iwai Y, Yamanaka K, Higashiyama S, Takami T, et al. Diagnostic accuracy of 11C-methionine pet for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med. 2008;49:694–9.

    Article  PubMed  Google Scholar 

  15. Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med. 1997;38:1614–23.

    PubMed  CAS  Google Scholar 

  16. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.

    Article  PubMed  Google Scholar 

  17. Aston JA, Cunningham VJ, Asselin MC, Hammers A, Evans AC, Gunn RN. Positron emission tomography partial volume correction: estimation and algorithms. J Cereb Blood Flow Metab. 2002;22:1019–34.

    Article  PubMed  Google Scholar 

  18. Mineura K, Sasajima T, Kowada M, Uesaka Y, Shishido F. Innovative approach in the diagnosis of gliomatosis cerebri using carbon-11-l-methionine positron emission tomography. J Nucl Med. 1991;32:726–8.

    PubMed  CAS  Google Scholar 

  19. Dorfman DD, Berbaum KS, Metz CE. Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method. Invest Radiol. 1992;27:723–31.

    Article  PubMed  CAS  Google Scholar 

  20. Hillis SL, Obuchowski NA, Schartz KM, Berbaum KS. A comparison of the Dorfman–Berbaum–Metz and Obuchowski–Rockette methods for receiver operating characteristic (ROC) data. Stat Med. 2005;30:1579–607.

    Article  Google Scholar 

  21. Hillis SL, Berbaum KS. Monte Carlo validation of the Dorfman–Berbaum–Metz method using normalized pseudovalues and less data-based model simplification. Acad Radiol. 2005;12:1534–41.

    Article  PubMed  Google Scholar 

  22. Boellaard R, van Lingen A, Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med. 2001;42:808–17.

    PubMed  CAS  Google Scholar 

  23. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med. 2004;18:291–6.

    Article  PubMed  CAS  Google Scholar 

  24. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S. Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med. 2005;19:677–83.

    Article  PubMed  Google Scholar 

  25. Mineura K, Sasajima T, Kowada M, Ogawa T, Hatazawa J, Uemura K. Indications for differential diagnosis of nontumor central nervous system diseases from tumors. A positron emission tomography study. J Neuroimaging. 1997;7:8–15.

    PubMed  CAS  Google Scholar 

  26. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med. 1995;36:484–92.

    PubMed  CAS  Google Scholar 

  27. Ogawa T, Kanno I, Shishido F, Inugami A, Higano S, Fujita H, et al. Clinical value of PET with 18F-fluorodeoxyglucose and l-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol. 1991;32:197–202.

    Article  PubMed  CAS  Google Scholar 

  28. Iwai Y, Yamanaka K, Oda J, Tsuyuguchi N, Ochi H. Tracer accumulation in radiation necrosis of the brain after thallium-201 SPECT and [11C]methionine PET—case report. Neurol Med Chir. 2001;41:415–8.

    Article  CAS  Google Scholar 

  29. Shiga T, Morimoto Y, Kubo N, Katoh N, Katoh C, Takeuchi W, et al. A new PET scanner with semiconductor detectors enables better identification of intratumoral inhomogeneity. J Nucl Med. 2009;50:148–55.

    Article  PubMed  Google Scholar 

  30. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999;44:781–99.

    Article  PubMed  CAS  Google Scholar 

  31. Nuutinen J, Jyrkkiö S, Lehikoinen P, Lindholm P, Minn H. Evaluation of early response to radiotherapy in head and neck cancer measured with [11C]methionine-positron emission tomography. Radiother Oncol. 1999;52:225–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank radiologic technologists Kotaro Suzuki, Hidehiko Omote and Keiichi Magota for excellent technical assistance and PET scanning. We also thank Makoto Sato and Kyotaro Suzuma for synthesis of 11C-methionine, and Reiko Usui and Kenji Hirata for clinical study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shozo Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, S., Shiga, T., Hattori, N. et al. Semiquantitative analysis of C-11 methionine PET may distinguish brain tumor recurrence from radiation necrosis even in small lesions. Ann Nucl Med 25, 213–220 (2011). https://doi.org/10.1007/s12149-010-0450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-010-0450-2

Keywords

Navigation