Skip to main content
Log in

Expression of GABAB Receptors Is Altered in Brains of Subjects with Autism

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Autism is a neurodevelopmental disorder that is often comorbid with seizures. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in brain. GABAB receptors play an important role in maintaining excitatory–inhibitory balance in brain and alterations may lead to seizures. We compared levels of GABAB receptor subunits GABAB receptor 1 (GABBR1) and GABAB receptor 2 (GABBR2) in cerebellum, Brodmann’s area 9 (BA9), and BA40 of subjects with autism and matched controls. Levels of GABBR1 were significantly decreased in BA9, BA40, and cerebellum, while GABBR2 was significantly reduced in the cerebellum. The presence of seizure disorder did not have a significant impact on the observed reductions in GABAB receptor subunit expression. Decreases in GABAB receptor subunits may help explain the presence of seizures that are often comorbid with autism, as well as cognitive difficulties prevalent in autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

References

  1. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. APA, Washington, DC

    Google Scholar 

  2. Fombonne E (2006) Past and future perspectives on autism epidemiology. In: Moldin SO, Rubenstein JLR (eds) Understanding autism from basic neuroscience to treatment. CRC/Taylor and Francis, Boca Raton, pp 25–48

    Google Scholar 

  3. Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358

    Article  PubMed  Google Scholar 

  4. Bowery NG (2000) GABAB receptors structure and function. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott, Williams and Wilkins, Philadelphia, pp 233–244

    Google Scholar 

  5. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M et al (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679

    Article  PubMed  CAS  Google Scholar 

  6. Kuriyama K, Hirouchi M, Kimura H (2000) Neurochemical and molecular pharmacological aspects of the GABA(B) receptor. Neurochem Res 25:1233–1239

    Article  PubMed  CAS  Google Scholar 

  7. Leung LS, Canning KJ, Shen B (2005) Hippocampal after discharges after GABA(B)-receptor blockade in the freely moving rat. Epilepsia 46:203–216

    Article  PubMed  CAS  Google Scholar 

  8. Li J, Olinger AB, Dassow MS, Abel MS (2003) Up-regulation of GABA(B) receptor mRNA and protein in the hippocampus of cocaine- and lidocaine-kindled rats. Neuroscience 118:451–462

    Article  PubMed  CAS  Google Scholar 

  9. Zai G, King N, Wong GW, Barr CL, Kennedy JL (2005) Possible association between the gamma-aminobutyric acid type B receptor 1 (GABBR1) gene and schizophrenia. Eur Neuropsychopharmacol 15:347–352

    Article  PubMed  CAS  Google Scholar 

  10. Zai G, Arnold P, Burroughs E, Barr CL, Richter MA, Kennedy JL (2005) Evidence for the gamma-amino-butyric acid type B receptor 1 (GABBR1) gene as a susceptibility factor in obsessive–compulsive disorder. Am J Med Genet B Neuropsychiatr Genet 134:25–29

    Google Scholar 

  11. Princivalle AP, Duncan JS, Thom M, Bowery NG (2003) GABA(B1a), GABA(B1b) AND GABA(B2) mRNA variants expression in hippocampus resected from patients with temporal lobe epilepsy. Neuroscience 122:975–984

    Article  PubMed  CAS  Google Scholar 

  12. Tan NC, Heron SE, Scheffer IE, Berkovic SF, Mulley JC (2005) Is variation in the GABA(B) receptor 1 gene associated with temporal lobe epilepsy? Epilepsia 46:778–780

    Article  PubMed  CAS  Google Scholar 

  13. Straessle A, Loup F, Arabadzisz D, Ohning GV, Fritschy JM (2003) Rapid and long-term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy. Eur J Neurosci 18:2213–2226

    Article  PubMed  Google Scholar 

  14. Princivalle AP, Richards DA, Duncan JS, Spreafico R, Bowery NG (2003) Modification of GABA(B1) and GABA(B2) receptor subunits in the somatosensory cerebral cortex and thalamus of rats with absence seizures (GAERS). Epilepsy Res 55:39–51

    Article  PubMed  CAS  Google Scholar 

  15. Han Y, Qin J, Bu DF, Chang XZ, Yang ZX (2006) Successive alterations of hippocampal gamma-aminobutyric acid B receptor subunits in a rat model of febrile seizure. Life Sci 78:2944–2952

    Article  PubMed  CAS  Google Scholar 

  16. Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127:2572–2583

    Article  PubMed  Google Scholar 

  17. Prosser HM, Gill CH, Hirst WD, Grau E, Robbins M, Calver A et al (2001) Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice. Mol Cell Neurosci 17:1059–1070

    Article  PubMed  CAS  Google Scholar 

  18. Schuler V, Lüscher C, Blanchet C, Klix N, Sansig G, Klebs K et al (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31:47–58

    Article  PubMed  CAS  Google Scholar 

  19. Canitano R (2007) Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 16:61–66

    Article  PubMed  Google Scholar 

  20. Binnie CD (1993) Significance and management of transitory cognitive impairment due to subclinical EEG discharges in children. Brain Dev 15:23–30

    Article  PubMed  CAS  Google Scholar 

  21. Fatemi SH, Halt A, Stary J, Kanodia R, Schulz SC, Realmuto G (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in parietal and cerebellar cortices of autistic subjects. Biol Psychiatry 52:805–810

    Article  PubMed  CAS  Google Scholar 

  22. Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113:559–568

    Article  PubMed  CAS  Google Scholar 

  23. Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2008) GABA(A) receptor down regulation in brains of subjects with autism. J Autism Dev Disord (in press)

Download references

Acknowledgements

Human tissue was obtained from the NICHD Brain and Tissue Bank for Developmental Disorders (University of Maryland); TARF; the Harvard Brain Tissue Resource Center, which is supported in part by PHS grant number R24 MH068855; the Brain Endowment Bank, which is funded in part by the National Parkinson Foundation, Inc., Miami, FL, USA; and the Autism Tissue Program and is gratefully acknowledged. Grant support by National Institute of Child Health and Human Development (#5R01HD052074-01A2) to SHF is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hossein Fatemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatemi, S.H., Folsom, T.D., Reutiman, T.J. et al. Expression of GABAB Receptors Is Altered in Brains of Subjects with Autism. Cerebellum 8, 64–69 (2009). https://doi.org/10.1007/s12311-008-0075-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0075-3

Keywords

Navigation