Skip to main content

Advertisement

Log in

Neuroanatomical Correlates of Depression in Friedreich’s Ataxia: a Voxel-Based Morphometry Study

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Affective disorders have been increasingly recognized in neurodegenerative diseases and often result in poor quality of life. However, the frequency, clinical relevance, and anatomical substrate of depression in Friedreich’s ataxia were not yet evaluated. We assessed 22 patients with Friedreich’s ataxia for major depression using Beck Depression Inventory and cerebral 3 T MRI scans. We then employed whole-brain voxel-based morphometry analyses on volumetric T1 datasets to compare tissue loss between patients with and without major depression. Patients (36.3 %) fulfilled criteria for major depression (8/22). Mean Beck Depression Inventory (BDI) score was 9.63 ± 8.95 and the depressive group had significantly higher score compared to non-depressive group (18.5 ± 8.6 vs 4.4 ± 2.9, p < 0.001). There was no correlation between Beck Depression Inventory score and age of patients, ataxia severity, age at onset, or duration of the disease. The comparison between patient groups found no significant differences of white matter volumes. In contrast, we found reduction of gray matter volumes in the depressive group in medial and orbital region of frontal lobe and anterior cingulate gyri (p < 0.001). Regression analyses have shown that BDI scores were inversely correlated with gray matter volume at right superior frontal gyrus. Major depression is frequent in Friedreich’s ataxia and possibly under recognized. Our results strongly suggest that this may not be a simply reactive phenomenon, but rather associated to structural abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 2007;6:245–57.

    Article  PubMed  CAS  Google Scholar 

  2. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by anintronic GAA triplet repeat expansion. Science. 1996;271:1423–7.

    Article  PubMed  CAS  Google Scholar 

  3. Pandolfo M. Friedreich ataxia. Arch Neurol. 2008;65:1296–303.

    Article  PubMed  Google Scholar 

  4. Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis and molecular genetics. J NeurolSci. 2011;303:1–12.

    CAS  Google Scholar 

  5. Morral JA, Davis AN, Qian J, Gelman BB, Koeppen AH. Pathology and pathogenesis of sensory neuropathy in Friedreich’s ataxia. Acta Neuropathol. 2010;120:97–108.

    Article  PubMed  Google Scholar 

  6. Goulart FO, Godke BA, Borges V, Azevedo-Silva SM, Mendes MF, Cendoroglo MS, et al. Fatigue in a cohort of geriatric patients with and without Parkinson’s disease. Braz J Med Biol Res. 2009;42:771–5.

    Article  PubMed  CAS  Google Scholar 

  7. Friedman JH, Amick MM. Fatigue and daytime somnolence in Machado–Joseph disease (spinocerebellar ataxia type 3). Mov Disord. 2008;23:1323–4.

    Article  PubMed  Google Scholar 

  8. Feldmann A, Illes Z, Kosztolanyi P, Illes E, Mike A, Kover F, et al. Morphometric changes of gray matter in Parkinson’s disease with depression: a voxel-based morphometry study. Mov Disord. 2008;23:42–6.

    Article  PubMed  Google Scholar 

  9. Epstein E, Farmer JM, Tsou A, Perlman S, Subramony SH, Gomez CM, et al. Health related quality of life measures in Friedreich ataxia. J Neurol Sci. 2008;272:123–8.

    Article  PubMed  Google Scholar 

  10. Paulsen EK, Friedman LS, Myers LM, Lynch DR. Health-related quality of life in children with Friedreich ataxia. Pediatr Neurol. 2010;42:335–7.

    Article  PubMed  Google Scholar 

  11. Cardoso EF, Maia FM, Fregni F, Myczkowski ML, Melo LM, Sato JR, et al. Depression in Parkinson’s disease: converge from voxel-based morphometry and functional magnetic resonance in limbic thalamus. NeuroImage. 2009;47:467–72.

    Article  PubMed  Google Scholar 

  12. Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G, et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996;59:554–60.

    PubMed  CAS  Google Scholar 

  13. Subramony SH, May W, Lynch D, Gomez C, Fischbeck K, Hallett M, et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology. 2005;64:1261–2.

    Article  PubMed  CAS  Google Scholar 

  14. Del-Ben CM, Vilela JA, Crippa JA, Hallak JEC, Labate CM, Zuardi AW. Reliability of the structured interview for DSM-IV—clinical scale translated to Portuguese. Rev Bras Psiquiatr. 2001;23:156–9.

    Article  Google Scholar 

  15. Gorenstein C, Andrade L. Validation of a Portuguese version of the Beck Depression Inventory and State-Tract Anxiety Inventory in Brazilian subjects. Braz J Med Biol Res. 1996;29:453–7.

    PubMed  CAS  Google Scholar 

  16. Ashburner JA. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  17. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11:805–21.

    Article  PubMed  CAS  Google Scholar 

  18. Cecchin CR, Pires AP, Rieder CR, Monte TL, Silveira I, Carvalho T, et al. Depressive symptoms in Machado–Joseph disease (SCA3) patients and their relatives. Community Genet. 2007;10:19–26.

    Article  PubMed  CAS  Google Scholar 

  19. Flerck MP, Berlim MT, Lafer B, Sougey EB, Del Porto JA, Brasil MA, et al. Review of the guidelines of the Brazilian Medical Association for the treatment of depression. Rev Bras Psiquiatr. 2009;31:S7–S17.

    Article  Google Scholar 

  20. White M, Laconde R, Botez-Marquard T. Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich’s ataxia. Acta Neurol Scand. 2000;102:222–6.

    Article  PubMed  CAS  Google Scholar 

  21. Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79:82–5.

    Article  PubMed  CAS  Google Scholar 

  22. França Jr MC, D’Abreu A, Yassuda CL, Bonadia LC, Santos da Silva M, Nucci A, et al. A combined voxel-based morphometry and H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256:1114–20.

    Article  PubMed  Google Scholar 

  23. Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel-based morphometry. NeuroImage. 2008;40:19–25.

    Article  PubMed  Google Scholar 

  24. Kostic VS, Filippi M. Neuroanatomical correlates of depression and apathy in Parkinson’s disease: magnetic resonance imaging studies. J Neurol Sci. 2011;310:61–3.

    Article  PubMed  Google Scholar 

  25. Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH, et al. Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatr. 2012;36:11–6.

    Article  Google Scholar 

  26. Bora E, Fornito A, Pantelis C, Yücel M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord. 2012;138:9–18.

    Article  PubMed  Google Scholar 

  27. Zou K, Deng W, Li T, Zhang B, Jiang L, Huang C, et al. Changes of brain morphometry in first-episode, drug-naive, non-late-life adult patients with major depression: an optimized voxel-based morphometry study. Biol Psychiatry. 2010;67:186–8.

    Article  PubMed  Google Scholar 

  28. Wagner G, Koch K, Schachtzabel C, Reichenbach JR, Sauer H, Schlösser RG. Enhanced rostral anterior cingulate cortex activation during cognitive control is related to orbitofrontal volume reduction in unipolar depression. J Psychiatry Neurosci. 2008;33:199–208.

    PubMed  Google Scholar 

  29. Vasic N, Walter H, Höse A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord. 2008;109:107–16.

    Article  PubMed  Google Scholar 

  30. Lee HY, Tae WS, Yoon HK, Lee BT, Paik JW, Son KR, et al. Demonstration of decreased gray matter concentration in the midbrain encompassing the dorsal raphe nucleus and the limbic subcortical regions in major depressive disorder: an optimized voxel-based morphometry study. J Affect Disord. 2011;133:128–36.

    Article  PubMed  Google Scholar 

  31. Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80:395–9.

    Article  PubMed  Google Scholar 

  32. Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry. 2004;161:598–607.

    Article  PubMed  Google Scholar 

  33. Hamilton J, Siemer M, Gotlib I. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance images studies. Mol Psychiatry. 2008;13:993–1000.

    Article  PubMed  CAS  Google Scholar 

  34. Koolschijn P, van Haren N, Lensvelt-Mulders G, Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009;30:3719–35.

    Article  PubMed  Google Scholar 

  35. Ye T, Peng J, Nie B, Gao J, Liu J, Wang G, et al. Altered functional connectivity of dorsolateral prefrontal cortex in first-episode patients with major depressive disorder. Eur J Radiol. 2012. doi:10.1016/j.ejrad.2011.04.058

  36. Carballedo A, Scheuerecker J, Meisenzahl E, Schoepf V, Bokde A, Möller HJ, et al. Functional connectivity of emotional processing in depression. J Affect Disord. 2011;134:272–9.

    Article  PubMed  Google Scholar 

  37. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cog Sci. 2005;9:242–9.

    Article  Google Scholar 

  38. Leung KK, Lee TMC, Wong LS, Li LSW, Yip PSF, Khong L. Neural correlates of attention biases of people with major depressive disorder: a voxel-based morphormetry study. Psychol Med. 2009;39:1097–106.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Conflict of interests

The authors report no conflict of interests regarding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcondes C. França Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, C.B., Yasuda, C.L., D’Abreu, A. et al. Neuroanatomical Correlates of Depression in Friedreich’s Ataxia: a Voxel-Based Morphometry Study. Cerebellum 12, 429–436 (2013). https://doi.org/10.1007/s12311-012-0424-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0424-0

Keywords

Navigation