Skip to main content

Advertisement

Log in

Diffusion Tensor Tractography of the Cerebellar Peduncles in Prematurely Born 7-Year-Old Children

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The objective of this study was to correlate neurodevelopmental outcome of preterm-born children and their perinatal clinical and imaging characteristics with diffusion magnetic resonance imaging (MRI) measures of the three cerebellar peduncles at age 7. Included in this prospective longitudinal study were 140 preterm-born children (<30 weeks gestation) who underwent neurodevelopmental assessment (IQ, motor, language, working memory) and diffusion-weighted imaging (DWI) at age 7 years. White matter tracts in the superior, middle, and inferior cerebellar peduncles were delineated using regions of interest drawn on T2-weighted images and fractional anisotropy (FA) maps. Diffusion measures (mean diffusivity (MD) and FA) and tract volumes were calculated. Linear regression was used to assess relationships with outcome. The severity of white matter injury in the neonatal period was associated with lower FA in the right superior cerebellar peduncle (SCP) and lower tract volumes of both SCPs and middle cerebellar peduncles (MCPs). In the MCP, higher IQ was associated with lower MD in the whole group and higher FA in right-handed children. In the SCP, lower motor scores were associated with higher MD and higher language scores were associated with higher FA. These associations remained significant in multivariable models. This study adds to the body of literature detailing the importance of cerebellar involvement in cognitive function related to reciprocal connections with supratentorial structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manto M. The cerebellum, cerebellar disorders, and cerebellar research—two centuries of discoveries. Cerebellum. 2008;7:505–16.

    Article  PubMed  Google Scholar 

  2. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22:2663–76.

    Article  PubMed  Google Scholar 

  3. Thach WT. On the mechanism of cerebellar contributions to cognition. Cerebellum. 2007;6:163–7.

    Article  CAS  PubMed  Google Scholar 

  4. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  5. Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum. 2008;7:589–94.

    Article  PubMed  Google Scholar 

  6. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  7. Ghez C, Thach WT, The Cerebellum. In: Principles of Neural sciences, 4th Ed. Editors: Kandel RK, Swartz JH, Jessel TM. Mc Graw Hill. 2000: 832–852.

  8. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child. 1973;48:757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med. 1999;42:1123–7.

    Article  CAS  PubMed  Google Scholar 

  10. Tam EW, Miller SP, Studholme C, Chau V, Glidden D, Poskitt KJ, et al. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr. 2011;158:366–71.

    Article  PubMed  Google Scholar 

  11. Tam EW, Ferriero DM, Xu D, Berman JI, Vigneron DB, Barkovich AJ, et al. Cerebellar development in the preterm neonate: effect of supratentorial brain injury. Pediatr Res. 2009;66:102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Limperopoulos C, Bassan H, Gauvreau K, Robertson Jr RL, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120:584–93.

    Article  PubMed  Google Scholar 

  13. Limperopoulos C, Chilingaryan G, Guizard N, Robertson RL, Du Plessis AJ. Cerebellar injury in the premature infant is associated with impaired growth of specific cerebral regions. Pediatr Res. 2010;68:145–50.

    Article  PubMed  Google Scholar 

  14. Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex. 2014;24:728–36.

    Article  PubMed  Google Scholar 

  15. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51:527–39.

    Article  CAS  PubMed  Google Scholar 

  16. Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, et al. Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology. 2001;221:349–58.

    Article  CAS  PubMed  Google Scholar 

  17. Hüppi PS, Dubois J. Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med. 2006;11:489–97.

    Article  PubMed  Google Scholar 

  18. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage. 2012;60:340–52.

    Article  CAS  PubMed  Google Scholar 

  19. Hüppi PS, Murphy B, Maier SE, Zientara GP, Inder TE, Barnes PD, et al. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics. 2001;107:455–60.

    Article  PubMed  Google Scholar 

  20. Murakami A, Morimoto M, Yamada K, Kizu O, Nishimura A, Nishimura T, et al. Fiber-tracking techniques can predict the degree of neurologic impairment for periventricular leukomalacia. Pediatrics. 2008;122:500–6.

    Article  PubMed  Google Scholar 

  21. Eluvathingal TJ, Chugani HT, Behen ME, Juhász C, Muzik O, Maqbool M, et al. Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics. 2006;117:2093–100.

    Article  PubMed  Google Scholar 

  22. Nagel BJ, Bathula D, Herting M, Schmitt C, Kroenke CD, Fair D, et al. Altered white matter microstructure in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2011;50:283–92.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bechtel N, Kobel M, Penner IK, Klarhöfer M, Scheffler K, Opwis K, et al. Decreased fractional anisotropy in the middle cerebellar peduncle in children with epilepsy and/or attention deficit/hyperactivity disorder: a preliminary study. Epilepsy Behav. 2009;15:294–8.

    Article  PubMed  Google Scholar 

  24. Anderson P, Doyle LW, Victorian Infant Collaborative Study Group. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA. 2003;289:3264–72.

    Article  PubMed  Google Scholar 

  25. Larroque B, Ancel PY, Marret S, Marchand L, André M, Arnaud C, et al. Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet. 2008;371:813–20.

    Article  PubMed  Google Scholar 

  26. Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics. 2009;124:717–28.

    Article  PubMed  Google Scholar 

  27. Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT, van der Grond J, Walther FJ, van Wezel-Meijler G. Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology. 2009;252(1):190–9.

    Article  PubMed  Google Scholar 

  28. Thompson DK, Warfield SK, Carlin JB, Pavlovic M, Wang HX, Bear M, et al. Perinatal risk factors altering regional brain structure in the preterm infant. Brain. 2007;130:667–77.

    Article  PubMed  Google Scholar 

  29. Mathur AM, Neil JJ, McKinstry RC, Inder TE. Transport, monitoring, and successful brain MR imaging in unsedated neonates. Pediatr Radiol. 2008;38:260–4.

    Article  PubMed  Google Scholar 

  30. Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol. 2013;34:2208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wechsler D. Wechsler Abbreviated Scale of Intelligence (WASI). 1999; The Psychological Corporation.

  32. Henderson SE, Sugden DA, Barnett AL. Movement Assessment Battery for Children e Second Edition (Movement ABC-2). London: The Psychological Corporation; 2007.

    Google Scholar 

  33. Semel E, Wiig EH, Secord WA. Clinical Evaluation of Language Fundamentals, Fourth Edition (CELF-4). Toronto: The Psychological Corporation/A Harcourt Assessment Company; 2003.

    Google Scholar 

  34. Baddeley AD, Hitch G. Working memory. In G. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–90). 1974; New York: Academic Press.

  35. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23.

    Article  CAS  PubMed  Google Scholar 

  36. Treyvaud K, Ure A, Doyle LW, Lee KJ, Rogers CE, Kidokoro H, et al. Psychiatric outcomes at age seven for very preterm children: rates and predictors. J Child Psychol Psychiatry. 2013;54:772–9.

    Article  PubMed  Google Scholar 

  37. Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry. 2000;41:645–55.

    Article  CAS  PubMed  Google Scholar 

  38. Roberts G, Howard K, Spittle AJ, Brown NC, Anderson PJ, Doyle LW. J Rates of early intervention services in very preterm children with developmental disabilities at age 2 years. Paediatr Child Health. 2008;44:276–80.

    Article  Google Scholar 

  39. Estep ME, Smyser CD, Anderson PJ, Ortinau CM, Wallendorf M, Katzman CS, et al. Diffusion tractography and neuromotor outcome in very preterm children with white matter abnormalities. Pediatr Res. 2014;76:86–92.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shimony JS, Burton H, Epstein AA, McLaren DG, Sun SW, Snyder AZ. Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex. 2006;16:1653–61.

    Article  CAS  PubMed  Google Scholar 

  41. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96:10422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bender R, Lange S. Adjusting for multiple testing—when and how? J Clin Epidemiol. 2001;54:343–9.

    Article  CAS  PubMed  Google Scholar 

  43. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124:60–6.

    Article  CAS  PubMed  Google Scholar 

  44. van Kooij BJ, Benders MJ, Anbeek P, Van Haastert IC, De Vries LS, Groenendaal F. Cerebellar volume and proton magnetic resonance spectroscopy at term, and neurodevelopment at 2 years of age in preterm infants. Dev Med Child Neurol. 2012;54:260–6.

    Article  PubMed  Google Scholar 

  45. Constable RT, Ment LR, Vohr BR, Kesler SR, Fulbright RK, Lacadie C, et al. Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics. 2008;121:306–16.

    Article  PubMed  Google Scholar 

  46. van Kooij BJ, van Pul C, Benders MJ, van Haastert IC, de Vries LS, Groenendaal F. Fiber tracking at term displays gender differences regarding cognitive and motor outcome at 2 years of age in preterm infants. Pediatr Res. 2011;70:626–32.

    Article  PubMed  Google Scholar 

  47. Allin MP, Kontis D, Walshe M, Wyatt J, Barker GJ, Kanaan RA, et al. White matter and cognition in adults who were born preterm. PLoS One. 2011;6, e24525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Counsell SJ, Edwards AD, Chew AT, Anjari M, Dyet LE, Srinivasan L, et al. Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain. 2008;131:3201–8.

    Article  PubMed  Google Scholar 

  49. Hanaie R, Mohri I, Kagitani-Shimono K, Tachibana M, Azuma J, Matsuzaki J, et al. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. Cerebellum. 2013;12:645–56.

    Article  PubMed  Google Scholar 

  50. Gelinas JN, Fitzpatrick KP, Kim HC, Bjornson BH. Cerebellar language mapping and cerebral language dominance in pediatric epilepsy surgery patients. Neuroimage Clin. 2014;12:296–306.

    Article  Google Scholar 

  51. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15:435–55.

    Article  PubMed  Google Scholar 

  52. Szaflarski JP, Rajagopal A, Altaye M, Byars AW, Jacola L, Schmithorst VJ, et al. Left-handedness and language lateralization in children. Brain Res. 2012;1433:85–97.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson RT, Yeatman JD, Wandell BA, Buonocore MH, Amaral DG, Nordahl CW. Diffusion properties of major white matter tracts in young, typically developing children. NeuroImage. 2014;88:143–54.

    Article  PubMed  Google Scholar 

  54. Trivedi R, Agarwal S, Rathore RK, Saksena S, Tripathi RP, Malik GK, et al. Understanding development and lateralization of major cerebral fiber bundles in pediatric population through quantitative diffusion tensor tractography. Pediatr Res. 2009;66:636–41.

    Article  PubMed  Google Scholar 

  55. Sivaswamy L, Kumar A, Rajan D, Behen M, Muzik O, Chugani D, et al. A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder. J Child Neurol. 2010;25:1223–31.

    Article  PubMed  Google Scholar 

  56. Parker J, Mitchell A, Kalpakidou A, Walshe M, Jung HY, Nosarti C, et al. Cerebellar growth and behavioural & neuropsychological outcome in preterm adolescents. Brain. 2008;131:1344–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Australia’s National Health and Medical Research Council (Centre for Clinical Research Excellence 546519 to LD, PA, TI; Centre for Research Excellence 1060733 to LD, PA; Project grants 237117 to LD, 491209 to PA; Senior Research Fellowships 628371 & 1081288 to PA), United Cerebral Palsy Foundation (USA), Leila Y. Mathers Charitable Foundation (USA), the Brown Foundation (USA), the Victorian Government’s Operational Infrastructure Support Program, The Royal Children’s Hospital Foundation, National Institute of Health R01HD058056, UL1 TR000448 and K02NS089852, and the Doris Duke Charitable Foundation. We would like to thank Dr Deanne Thompson for reviewing the manuscript and Dr Lena Novack for statistical guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eilon Shany.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shany, E., Inder, T.E., Goshen, S. et al. Diffusion Tensor Tractography of the Cerebellar Peduncles in Prematurely Born 7-Year-Old Children. Cerebellum 16, 314–325 (2017). https://doi.org/10.1007/s12311-016-0796-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0796-7

Keywords

Navigation