Skip to main content

Advertisement

Log in

Vascular Neural Network: the Importance of Vein Drainage in Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

This perspective commentary summarized the stroke pathophysiology evolution, especially the focus in the past on neuroprotection and neurovascular protection and highlighted the newer term for stroke pathophysiology: vascular neural network. Emphasis is on the role of venules and veins after an acute stroke and as potential treatment targets. Vein drainage may contribute to the acute phase of brain edema and the outcomes of stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pound P, Bury M, Ebrahim S. From apoplexy to stroke. Age Ageing. 1997;26:331–7.

    Article  CAS  PubMed  Google Scholar 

  2. Caplan L. Cerebrovascular disease: historical background, with an eye to the future. Cleveland Clin J Med2004; 71 (supplement 1): S22-S24, .

  3. Schiller F. Concepts of stroke before and after Virchow. Med Hist. 1970;14:115–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Demarin V, Zikic M, Zikic TR. Stroke: a historical overview and contemporary management. Curr Top Neurol Psychiatr Relat Discip. 2011;19:15–23.

    Google Scholar 

  5. Paciaroni M, Bogousslavsky J. How did stroke become of interest to neurologists? Neurology. 2009;73:724–8.

    Article  PubMed  Google Scholar 

  6. Nilsen ML. A historical account of stroke and the evolution of nursing care for stroke patients. J Neurosci Nurs. 2010;42:19–27.

    Article  PubMed  Google Scholar 

  7. Leak RK, Zheng P, Ji X, Zhang JH, Chen J. From apoplexy to stroke: historical perspectives and new research frontiers. Prog Neurobiol. 2013 Dec 25. doi: 10.1016/j.pneurobio.2013.12.003. [Epub ahead of print].

  8. Lapchak PA. Fast neuroprotection (Fast-NPRX) for acute ischemic stroke victims: the time for treatment is now. Transl Stroke Res. 2013;4:704–9.

    Article  PubMed  Google Scholar 

  9. Simon RP, Swan JH, Griffiths T, Meldrum BS. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984;226(4676):850–2.

    Article  CAS  PubMed  Google Scholar 

  10. Ayer A, Hwang BY, Appelboom G, Connolly Jr ES. Clinical trials for neuroprotective therapies in intracerebral hemorrhage: a new roadmap from bench to bedside. Transl Stroke Res. 2012;3:409–17.

    Article  PubMed  Google Scholar 

  11. Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35(2):354–6.

    Article  PubMed  Google Scholar 

  12. Iadecola C, Goldman SS, Harder DR, Heistad DD, Katusic ZS, Moskowitz MA, Simard JM, Sloan MA, Traystman RJ, Velletri PA. Recommendations of the National Heart, Lung, and Blood Institute working group on cerebrovascular biology and disease. Stroke. 2006 Jun;37(6):1578-81. Epub 2006 Apr 20.

  13. del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience. 2009 Feb 6;158(3):972-82. doi: 10.1016/j.neuroscience.2008.08.028. Epub 2008 Aug 27.

  14. Zhang J, Badaut J, Tang J, Obenaus A, Hartman R, Pearce W. The vascular neural network—a paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8:711–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang Z, Deng X, Dai Z, Chen B, Gao B, Xia C, et al. MRI image of the internal cerebral vein and basilar artery of rabbit following subarachnoid hemorrhage. Chin J Anat. 2012;35:137–41.

    CAS  Google Scholar 

  16. Ushiwata I, Ushiki T. Cytoarchitecture of the smooth muscle and pericytes of rat cerebral blood vessels. A scanning electron microscopic study. J Neurosurg. 1990;73:82–90.

    Article  CAS  PubMed  Google Scholar 

  17. Østergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, et al. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33(12):1825–37.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sehba FA, Mostafa G, Friedrich Jr V, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102(6):1094–100.

    Article  PubMed  Google Scholar 

  19. Larsen CC, Hansen-Schwartz J, Nielsen JD, Astrup J. Blood coagulation and fibrinolysis after experimental subarachnoid hemorrhage. Acta Neurochir (Wien). 2010;152(9):1577–81.

    Article  Google Scholar 

  20. Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27(1):121–30. doi:10.1089/neu.2009.1114.

    Article  PubMed  Google Scholar 

  21. Yu W, Rives J, Welch B, White J, Stehel E, Samson D. Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction. Stroke. 2009 Dec;40(12):3736-9. doi: 10.1161/STROKEAHA.109.563080. Epub 2009 Sep 17.

  22. Lassen NA. Control of cerebral circulation in health and disease. Circ Res. 1974;34(6):749–60.

    Article  CAS  PubMed  Google Scholar 

  23. Dai Z, Deng X, Zhang Z, Zhu Y, Zhang Y, Li D, et al. MRI study of deep cerebral veins after subarachniod hemorrhage in rabbits. Chin J Clinical Anat. 2012;30(2):176–80.

    Google Scholar 

  24. Mursch K, Wachter A, Radke K, Buhre W, Al-Sufi S, Munzel U, Behnke-Mursch J, Kolenda H. Blood flow velocities in the basal vein after subarachnoid haemorrhage. A prospective study using transcranial duplex sonography. Acta Neurochir (Wien). 2001;143(8):793–9; discussion 799–800.

    Google Scholar 

  25. Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G, Lyden PD, et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci. 2013;16(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  26. Lauw MN, Barco S, Coutinho JM, Middeldorp S. Cerebral venous thrombosis and thrombophilia: a systematic review and meta-analysis. Semin Thromb Hemost. 2013 Nov;39(8):913-27. doi: 10.1055/s-0033-1357504. Epub 2013 Oct 15.

  27. Lapchak PA, Zhang JH, Noble-Haeusslein LJ. Rigor guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4:279–85.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tajiri N, Dailey T, Metcalf C, Mosley YI, Lau T, Staples M, et al. In vivo animal stroke models. Transl Stroke Res. 2013;4:308–21.

    Article  PubMed  Google Scholar 

  29. Wang M, Xi G, Keep RF. Should the STAIR criteria be modified for preconditioning studies? Transl Stroke Res. 2013;4:3–14.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bahjat FR, Gesuete R, Stenzel-Poore MP. Steps to translate preconditioning from basic research to the clinic. Transl Stroke Res. 2013;4:89–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Antonic A, Sena ES, Donnan GA, Howells DW. Human in vitro models of ischaemic stroke: a test bed for translation. Transl Stroke Res. 2012;3:306–9.

    Article  PubMed  Google Scholar 

  32. Herson PS, Palmateer J, Hurn PD. Biological sex and mechanisms of ischemic brain injury. Transl Stroke Res. 2013;4:413–9.

    Article  PubMed  Google Scholar 

  33. Kim YW, Kim HJ, Choi SH, Kim DC. Prominent hypointense veins on susceptibility weighted image in the cat brain with acute infarction: DWI, SWI, and PWI. Acta Radiol. 2013 Oct 17. [Epub ahead of print].

  34. Pomschar A, Koerte I, Lee S, Laubender RP, Straube A, Heinen F, Ertl-Wagner B, Alperin N. MRI evidence for altered venous drainage and intracranial compliance in mild traumatic brain injury. PLoS One. 2013;8(2):e55447. doi: 10.1371/journal.pone.0055447. Epub 2013 Feb 6.

  35. Loch Macdonald R, Blessing J, Cusimano MD, Nima E, Daniel H, David H, et al. SAHIT Investigators—on the outcome of some subarachnoid hemorrhage clinical trials. Transl Stroke Res. 2013;4:286–96.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Khatibi, N. & Zhang, J.H. Vascular Neural Network: the Importance of Vein Drainage in Stroke. Transl. Stroke Res. 5, 163–166 (2014). https://doi.org/10.1007/s12975-014-0335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0335-0

Keywords

Navigation