Skip to main content

Advertisement

Log in

Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does it Reflect Activated Angiogenesis?

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24–48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BG:

Basal ganglia

DAPI:

4,6-Diamidino-2-phenylindole

HI:

Hypoxic-ischemic

HIE:

Hypoxic-ischemic encephalopathy

GFAP:

Glial fibrillary acidic protein

GM:

Gray matter

MRI:

Magnetic resonance imaging

VEGF:

Vascular endothelial growth factor

WM:

White matter

References

  1. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009;361:1349–58.

    Article  CAS  PubMed  Google Scholar 

  2. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005;365:663–70.

    Article  PubMed  Google Scholar 

  3. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013;1, CD003311.

    PubMed  Google Scholar 

  4. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353:1574–84.

    Article  CAS  PubMed  Google Scholar 

  5. Simbruner G, Mittal RA, Rohlmann F, Muche R. neo.nEURO.network Trial Participants. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics. 2010;126:e771–8.

    Article  PubMed  Google Scholar 

  6. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Wintermark P, Hansen A, Gregas MC, Soul J, Labrecque M, Robertson RL, et al. Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR Am J Neuroradiol. 2011;32:2023–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. De Vis JB, Hendrikse J, Petersen ET, de Vries LS, van Bel F, Alderliesten T, et al. Arterial spin-labeling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy. Eur Radiol. 2015;25:113–21.

    Article  PubMed  Google Scholar 

  9. Massaro AN, Bouyssi-Kobar M, Chang T, Vezina LG, du Plessis AJ, Limperopoulos C. Brain perfusion in encephalopathic newborns after therapeutic hypothermia. AJNR Am J Neuroradiol. 2013;34:1649–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wintermark P, Moessinger AC, Gudinchet F, Meuli R. Perfusion-weighted magnetic resonance imaging patterns of hypoxic-ischemic encephalopathy in term neonates. J Magn Reson Imaging. 2008;28:1019–25.

    Article  PubMed  Google Scholar 

  11. Wintermark P, Moessinger AC, Gudinchet F, Meuli R. Temporal evolution of MR perfusion in neonatal hypoxic-ischemic encephalopathy. J Magn Reson Imaging. 2008;27:1229–34.

    Article  PubMed  Google Scholar 

  12. Pryds O, Greisen G, Lou H, Friis-Hansen B. Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr. 1990;117:119–25.

    Article  CAS  PubMed  Google Scholar 

  13. Rutherford M, Counsell S, Allsop J, Boardman J, Kapellou O, Larkman D, et al. Diffusion-weighted magnetic resonance imaging in term perinatal brain injury: a comparison with site of lesion and time from birth. Pediatrics. 2004;114:1004–14.

    Article  PubMed  Google Scholar 

  14. Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med. 2006;56:216–23.

    Article  CAS  PubMed  Google Scholar 

  15. Barkovich AJ, Hajnal BL, Vigneron D, Sola A, Partridge JC, Allen F, et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol. 1998;19:143–9.

    CAS  PubMed  Google Scholar 

  16. Wintermark P, Hansen A, Soul J, Labrecque M, Robertson RL, Warfield SK. Early versus late MRI in asphyxiated newborns treated with hypothermia. Arch Dis Child Fetal Neonatal Ed. 2011;96:F36–44.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med. 1999;41:1246–54.

    Article  CAS  PubMed  Google Scholar 

  18. Cavusoglu M, Pfeuffer J, Ugurbil K, Uludag K. Comparison of pulsed arterial spin labeling encoding schemes and absolute perfusion quantification. Magn Reson Imaging. 2009;27:1039–45.

    Article  PubMed  Google Scholar 

  19. Wang J, Licht DJ, Jahng GH, Rubin JT, Haselgrove J. Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging. 2003;18:404–13.

    Article  PubMed  Google Scholar 

  20. Louboutin JP, Marusich E, Gao E, Agrawal L, Koch WJ, Strayer DS. Ethanol protects from injury due to ischemia and reperfusion by increasing vascularity via vascular endothelial growth factor. Alcohol. 2012;46:441–54.

    Article  CAS  PubMed  Google Scholar 

  21. McLendon RE, Burger PC, Pegram CN, Eng LF, Bigner DD. The immunohistochemical application of three anti-GFAP monoclonal antibodies to formalin-fixed, paraffin-embedded, normal and neoplastic brain tissues. J Neuropathol Exp Neurol. 1986;45:692–703.

    Article  CAS  PubMed  Google Scholar 

  22. Springer ML. Assessment of myocardial angiogenesis and vascularity in small animal models. Methods Mol Biol. 2010;660:149–67.

    Article  CAS  PubMed  Google Scholar 

  23. Northington FJ. Brief update on animal models of hypoxic-ischemic encephalopathy and neonatal stroke. ILAR J. 2006;47:32–8.

    Article  CAS  PubMed  Google Scholar 

  24. Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci. 2005;27:81–6.

    Article  CAS  PubMed  Google Scholar 

  25. Patel SD, Pierce L, Ciardiello AJ, Vannucci SJ. Neonatal encephalopathy: pre-clinical studies in neuroprotection. Biochem Soc Trans. 2014;42:564–8.

    Article  CAS  PubMed  Google Scholar 

  26. Fan X, van Bel F, van der Kooij MA, Heijnen CJ, Groenendaal F. Hypothermia and erythropoietin for neuroprotection after neonatal brain damage. Pediatr Res. 2013;73:18–23.

    Article  CAS  PubMed  Google Scholar 

  27. Fang AY, Gonzalez FF, Sheldon RA, Ferriero DM. Effects of combination therapy using hypothermia and erythropoietin in a rat model of neonatal hypoxia-ischemia. Pediatr Res. 2013;73:12–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hallene KL, Oby E, Lee BJ, Santaguida S, Bassanini S, Cipolla M, et al. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations. Neuroscience. 2006;142:267–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Noguchi T, Yoshiura T, Hiwatashi A, Togao O, Yamashita K, Nagao E, et al. Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol. 2008;29:688–93.

    Article  CAS  PubMed  Google Scholar 

  30. Wintermark P, Lechpammer M, Warfield SK, Kosaras B, Takeoka M, Poduri A, et al. Perfusion imaging of focal cortical dysplasia using arterial spin labeling: correlation with histopathological vascular density. J Child Neurol. 2013;28:1474–82.

    Article  PubMed  Google Scholar 

  31. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke. 2007;38:2795–803.

    Article  CAS  PubMed  Google Scholar 

  32. Perlman JM. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics. 2006;117:S28–33.

    Article  PubMed  Google Scholar 

  33. Chen W, Jadhav V, Tang J, Zhang JH. HIF-1alpha inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model. Neurobiol Dis. 2008;31:433–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Feng Y, Rhodes PG, Bhatt AJ. Dexamethasone pre-treatment protects brain against hypoxic-ischemic injury partially through up-regulation of vascular endothelial growth factor A in neonatal rats. Neuroscience. 2011;179:223–32.

    Article  CAS  PubMed  Google Scholar 

  35. Dzietko M, Derugin N, Wendland MF, Vexler ZS, Ferriero DM. Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res. 2013;4:189–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Back SA, Riddle A, McClure MM. Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke. 2007;38:724–30.

    Article  PubMed  Google Scholar 

  37. Folkerth RD. The neuropathology of acquired pre- and perinatal brain injuries. Semin Diagn Pathol. 2007;24:48–57.

    Article  PubMed  Google Scholar 

  38. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med. 2006;354:553–5.

    Article  PubMed  Google Scholar 

  39. Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009;8:491–500.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Fan Y, Yang GY. Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol. 2007;2:284–9.

    Article  PubMed  Google Scholar 

  41. Wintermark P. Current controversies in newer therapies to treat birth asphyxia. Int J Pediatr. 2011;2011:848413.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Jensen FE. Developmental factors regulating susceptibility to perinatal brain injury and seizures. Curr Opin Pediatr. 2006;18:628–33.

    Article  PubMed  Google Scholar 

  43. Charriaut-Marlangue C, Nguyen T, Bonnin P, Duy AP, Leger PL, Csaba Z, et al. Sildenafil mediates blood-flow redistribution and neuroprotection after neonatal hypoxia-ischemia. Stroke. 2014;45:850–6.

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Licht DJ, Jahng GH, Liu CS, Rubin JT, Haselgrove J, et al. Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging. 2003;18:404–13.

    Article  PubMed  Google Scholar 

  45. Zappe AC, Reichold J, Burger C, Weber B, Buck A, Pfeuffer J, et al. Quantification of cerebral blood flow in nonhuman primates using arterial spin labeling and a two-compartment model. Magn Reson Imaging. 2007;25:775–83.

    Article  PubMed  Google Scholar 

  46. Altman DI, Powers WJ, Perlman JM, Herscovitch P, Volpe SL, Volpe JJ. Cerebral blood flow requirement for brain viability in newborn infants is lower than in adults. Ann Neurol. 1988;24:218–26.

    Article  CAS  PubMed  Google Scholar 

  47. Biagi L, Abbruzzese A, Bianchi MC, Alsop DC, Del Guerra A, Tosetti M. Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging. 2007;25:696–702.

    Article  PubMed  Google Scholar 

  48. Miranda MJ, Olofsson K, Sidaros K. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling. Pediatr Res. 2006;60:359–63.

    Article  CAS  PubMed  Google Scholar 

  49. Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.

    Article  PubMed  Google Scholar 

  50. Ferriero DM, Miller SP. Imaging selective vulnerability in the developing nervous system. J Anat. 2010;217:429–35.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the families and their newborns for participating in this study. Special thanks also are due to the NICU nurses, NICU respiratory therapists, and MRI technicians who have made this study possible. We thank Lauren Jantzie for her help in teaching the surgical technique and the basics of immunohistochemical studies. We thank Mr. Wayne Ross Egers for his professional English correction of the manuscript. The work of Pia Wintermark is supported by the William Randolph Hearst Fund Award, the Thrasher Research Fund Early Career Award Program, the FRSQ Clinical Research Scholar Career Award Junior 1, the Canadian Institutes of Health Research Open Operating Grant, and the New Investigator Research Grant from the SickKids Foundation and the CIHR Institute of Human Development, Child and Youth Health (IHDCYH).

Conflict of Interest

This manuscript has been contributed to, seen, and approved by all the authors. No conflict of interest exists. All the authors fulfill the authorship credit requirements. The authors have no financial relationships relevant to this article to disclose. The study was not industry-sponsored. The work of Pia Wintermark is supported by the William Randolph Hearst Fund Award, the Thrasher Research Fund Early Career Award Program, the FRSQ Clinical Research Scholar Career Award Junior 1, the Canadian Institutes of Health Research Open Operating Grant, and the New Investigator Research Grant from the SickKids Foundation and the CIHR Institute of Human Development, Child and Youth Health (IHDCYH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia Wintermark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Term newborns with neonatal encephalopathy. Relative ratios of increased perfusion in the different regions of interest in asphyxiated newborns developing brain injury — (A) at approximately day 10 of life and (B) at approximately 1 month of life. Box and whisker plots (median, minimum, and maximum, in [mL/100 g/min]) representation. The ratios were obtained by comparing each measured value of cerebral blood flow measured in these newborns in the respective region of interest to the mean value in healthy newborns. The different regions of interest where cerebral blood flow was measured consisted of: (1) cortical grey matter (GM); (2) white matter (WM); and (3) basal ganglia (BG). The relative ratios of increased perfusion were similar around day 10 of life and around 1 month of life in grey matter and basal ganglia; the ratio decreased from around day 10 of life to around 1 month of life in white matter. However, the relative ratios of increased perfusion remained higher in white matter at both time-points, compared to grey matter and basal ganglia. (GIF 28 kb)

High Resolution Image (TIFF 9667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, H., Lechpammer, M., Jensen, F.E. et al. Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does it Reflect Activated Angiogenesis?. Transl. Stroke Res. 6, 224–233 (2015). https://doi.org/10.1007/s12975-015-0387-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0387-9

Keywords

Navigation