Skip to main content
Log in

3′-Deoxy-3′-[18F]fluorothymidine and O-(2-[18F]fluoroethyl)-L-tyrosine PET in Patients with Suspicious Recurrence of Glioma after Multimodal Treatment: Initial Results of a Retrospective Comparative Study

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to compare the uptakes and diagnostic accuracies between 3′-deoxy-3′-[18F]fluorothymidine (FLT) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in patients with a clinical suspicion of having a recurrence of glioma after multimodality treatment.

Methods

Thirty-two patients who underwent FLT and FET PET due to abnormal enhancement on magnetic resonance (MR) images were included. According to surgical confirmation or follow-up results, patients were divided into those with therapy-related benign changes (TRBCs) and those with recurrence. Recurrences were divided again into initial low-grade glioma (LGG) and high-grade glioma (HGG). The uptakes of FLT and FET were compared with the maximum standardized uptake value (SUVmax) and lesion-to-normal ratio (LNR). The diagnostic accuracies were compared via a receiver-operating-characteristic (ROC) curve analysis.

Results

The LNRs of FLT in recurrences with initial HGG (8.26 ± 5.02) were significantly higher than those in recurrences with initial LGG (3.43 ± 2.14) and TRBC (1.81 ± 0.60). The LNRs of FET in recurrence with initial HGG (2.70 ± 0.48) and LGG (3.03 ± 1.32) were significantly higher than those in the TRBC (1.60 ± 0.47). The areas under the ROC curve (AUCs) of FLT and FET for initial LGG were 0.768 and 0.893, respectively. The AUCs of FLT and FET for initial HGG were 1.000 and 0.964. However, there were no statistical significances. The results for comparing with SUVmax were the same as those with LNR.

Conclusions

Uptakes of FLT were different according to initial grade in patients with recurrent glioma, but those of FET were not. However, there were no statistical significances in the diagnostic accuracies according to initial grade between the two tracers in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4a–c

Similar content being viewed by others

References

  1. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481

    Article  PubMed  Google Scholar 

  2. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Dequeldre C, Del Fiore G et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    CAS  PubMed  Google Scholar 

  3. Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET guided stereotactic biopsy. J Nucl Med 38:1459–1462

    CAS  PubMed  Google Scholar 

  4. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    CAS  PubMed  Google Scholar 

  5. Jager PL, Vaalburg W, Pruim J, de Viries EG, Langen KJ, Piers DA (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–445

    CAS  PubMed  Google Scholar 

  6. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M et al (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212

    CAS  PubMed  Google Scholar 

  7. Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-L-tyrosine. Appl Radiat Isot 57:853–856

    Article  CAS  PubMed  Google Scholar 

  8. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with magnetic resonance imaging improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687

    Article  PubMed  Google Scholar 

  9. Pöpperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K (2004) Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470

    Article  PubMed  CAS  Google Scholar 

  10. Rachinger W, Goetz C, Pöpperl G, Gildehaus FJ, Kreth FW, Holtmannspötter M et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511

    Article  PubMed  Google Scholar 

  11. Floeth FW, Pauleit D, Sabel M, Stoffels G, Reifenberger G, Riemenschneider MJ et al (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:519–527

    Article  CAS  PubMed  Google Scholar 

  12. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  CAS  PubMed  Google Scholar 

  13. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM et al (1998) Imaging proliferation in vivo with 18F-FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  14. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ et al (2005) [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32:653–659

    Article  PubMed  Google Scholar 

  15. Chen W, Cloughesy T, Kamdar N, Satymurthy N, Berqsneider M, Liau L et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    CAS  PubMed  Google Scholar 

  16. Saga T, Kawashima H, Araki N, Takahashi JA, Nakashima Y, Hiqashi T et al (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31:774–780

    Article  PubMed  Google Scholar 

  17. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G et al (2005) 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958

    CAS  PubMed  Google Scholar 

  18. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    CAS  PubMed  Google Scholar 

  19. Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ et al (1988) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150:189–197

    PubMed  Google Scholar 

  20. Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK (1988) PET of malignant cerebral tumors after interstitial brachytherapy: demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69:830–838

    Article  CAS  PubMed  Google Scholar 

  21. Patronas NJ, DiChiro G, Brooks RA, DeLaPaz RL, Kornblith PL, Smith BH et al (1982) Work in progress: [18F]fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144:885–889

    CAS  PubMed  Google Scholar 

  22. Doyle WK, Budinger TF, Valk PE, Levin VA, Gutin PH (1987) Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography. J Comp Assist Tomogr 11:563–570

    Article  CAS  Google Scholar 

  23. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19:407–413

    CAS  PubMed  Google Scholar 

  24. Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M et al (1994) Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs. 18F-FDG PET. AJR Am J Roentgenol 163:1459–1465

    CAS  PubMed  Google Scholar 

  25. Hustinx R, Pourdehnad M, Kaschten B, Alavi A (2005) PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 43:35–47

    Article  PubMed  Google Scholar 

  26. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto Y, Wong TZ, Turkington TG, Hawk TC, Reardon DA, Coleman RE (2006) 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: comparison with Gd-DTPA enhanced magnetic resonance imaging. Mol Imaging Biol 8:340–347

    Article  PubMed  Google Scholar 

  28. Munch-Peterson B, Cloos L, Jensen K, Tyrsted G (1995) Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 35:69–89

    Article  Google Scholar 

  29. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    CAS  PubMed  Google Scholar 

  30. Barthel H, Perumal M, Latigo J, He Q, Brady F, Luthra SK et al (2005) The uptake of 3'-deoxy-3’-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32:257–263

    Article  CAS  PubMed  Google Scholar 

  31. Ljungdahl-Ståhle E, Guzenda E, Böttiger D, Wahren B, Oberq B, Ståhle L (1992) Penetration of zidovudine and 3′-fluoro-3′-deoxythymidine into the brain, muscle tissue, and veins in cynomolgus monkeys: relation to antiviral action. Antimicrob Agents Chemother 36:2418–2422

    PubMed  Google Scholar 

  32. Stahle L, Borg N (2000) Transport of alovudine (3′-fluorothymidine) into the brain and the cerebrospinal fluid of the rat, studied by microdialysis. Life Sci 66:1805–1816

    Article  CAS  PubMed  Google Scholar 

  33. Stober B, Tanase U, Herz M, Seidl C, Schwaiger M, Senekowitsch-Schmidtke R (2006) Differentiation of tumour and inflammation: characterisation of [methyl-3H]methionine (MET) and O-(2-[18F] fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur J Nucl Med Mol Imaging 33:932–939

    Article  PubMed  CAS  Google Scholar 

  34. Lahoutte T, Caveliers V, Camargo SM, Franca R, Ramadan T, Veljkovic E et al (2004) SPECT and PET amino acid tracer influx via system L (h4F2hc-hLAT1) and its transstimulation. J Nucl Med 45:1591–1596

    CAS  PubMed  Google Scholar 

  35. Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A et al (2003) Methyl-[11C]-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    CAS  PubMed  Google Scholar 

  36. Bergstrom M, Ericson K, Hagenfeldt L, Mosskin M, von Holst H, Noren G et al (1987) PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 11:208–213

    Article  CAS  PubMed  Google Scholar 

  37. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S et al (2002) PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation corrected images. J Nucl Med 43:1137–1143

    PubMed  Google Scholar 

  38. Choi JY, Woo SK, Choi Y, Choe YS, Lee KH, Kim BT (2007) Quantitative comparisons between CT and 68Ge transmission attenuation corrected 18F-FDG PET images: measured attenuation correction vs. segmented attenuation correction. Nucl Med Mol Imaging 41:49–53

    Google Scholar 

  39. Bong JK, Kim HJ, Son HK, Park YY, Park HJ, Yun MJ et al (2005) Assessment of attenuation correction techniques with a 137Cs point source. Korean J Nucl Med 39:57–68

    Google Scholar 

  40. Bolender NF, Cromwell LD, Graves V, Margolis MT, Kerber CW, Wendling L (1983) Interval appearance of glioblastomas not evident in previous CT examinations. J Comput Assist Tomogr 7:599–603

    Article  CAS  PubMed  Google Scholar 

  41. Okamoto K, Ito J, Takahashi N, Ishikawa K, Furusawa T, Tokiguchi S et al (2002) MRI of high-grade astrocytic tumors: early appearance and evolution. Neuroradiology 44:395–402

    Article  CAS  PubMed  Google Scholar 

  42. Recht LD, Lew R, Smith TW (1992) Suspected low-grade glioma: is deferring treatment safe? Ann Neurol 31:431–436

    Article  CAS  PubMed  Google Scholar 

  43. Afra D, Osztie E, Sipos L, Vitanovics D (1999) Preoperative history and postoperative survival of supratentorial low-grade astrocytomas. Br J Neurosurg 13:299–305

    Article  CAS  PubMed  Google Scholar 

  44. Piepmeier JM, Christopher S, Spencer DD, Byrne T, Kim J, Knisel JP et al (1996) Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas. Neurosurgey 38:872–878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Science and Engineering Foundation and Ministry of Education, Science and Technology, Republic of Korea through its National Nuclear Technology Program (Grant Code: M20702010002-08N0201-00200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Moo Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, S.Y., Lee, T.H., Rhee, C.H. et al. 3′-Deoxy-3′-[18F]fluorothymidine and O-(2-[18F]fluoroethyl)-L-tyrosine PET in Patients with Suspicious Recurrence of Glioma after Multimodal Treatment: Initial Results of a Retrospective Comparative Study. Nucl Med Mol Imaging 44, 45–54 (2010). https://doi.org/10.1007/s13139-009-0007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-009-0007-2

Keywords

Navigation