Skip to main content
Log in

Prognostic Value of Metabolic Tumor Volume on 11C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma

  • Original Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

C-11 methionine (MET) PET is commonly used for diagnosing high-grade glioma (HGG). Recently, volumetric analysis has been widely applied to oncologic PET imaging. In this study, we investigated the prognostic value of metabolic tumor volume (MTV) on MET PET in HGG.

Methods

A total of 30 patients with anaplastic astrocytoma (n = 12) and glioblastoma multiforme (n = 18) who underwent MET PET before treatment (surgery followed by chemo-radiotherapy) were retrospectively enrolled. Maximal tumor-to-normal brain ratio (TNRmax, maximum tumor activity divided by mean of normal tissue) and MTV (volume of tumor tissue that shows uptake >1.3-fold of mean uptake in normal tissue) were measured on MET PET. Adult patients were classified into two subgroups according to Radiation Therapy Oncology Group Recursive Partitioning Analysis (RTOG RPA) classification. Prognostic values of TNRmax, MTV and clinicopathologic factors were evaluated with regard to progression-free survival (PFS).

Results

Median PFS of all patients was 7.9 months (range 1.0–53.8 months). In univariate analysis, MTV (cutoff 35 cm3) was a significant prognostic factor for PFS (P = 0.01), whereas TNRmax (cutoff 3.3) and RTOG RPA class were not (P = 0.80 and 0.61, respectively). Treatment of surgical resection exhibited a borderline significance (P = 0.06). In multivariate analysis, MTV was the only independent prognostic factor for PFS (P = 0.03).

Conclusion

MTV on MET PET is a significant and independent prognostic factor for PFS in HGG patients, whereas TNRmax is not. Thus, performing volumetric analysis of MET PET is recommended in HGG for better prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G, Group EGW. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii93–101.

    Article  PubMed  Google Scholar 

  2. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hart MG, Garside R, Rogers G, Stein K, Grant R. Temozolomide for high grade glioma. Cochrane Database Syst Rev. 2013;4, CD007415. doi:10.1002/14651858.CD007415.pub2.

    PubMed  Google Scholar 

  4. Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004;6:227–35.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol. 2009;27:5743–50.

    Article  CAS  PubMed  Google Scholar 

  6. Paravati AJ, Heron DE, Landsittel D, Flickinger JC, Mintz A, Chen YF, et al. Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology Group-Recursive Partitioning Analysis in the IMRT and temozolomide era. J Neurooncol. 2011;104:339–49.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Galldiks N, Kracht LW, Berthold F, Miletic H, Klein JC, Herholz K, et al. [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol. 2010;96:231–9.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:64–74. doi:10.1016/j.ijrobp.2005.01.045.

    Article  CAS  PubMed  Google Scholar 

  9. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery. 2009;64:471–81.

    Article  PubMed  Google Scholar 

  10. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–70.

    Article  CAS  PubMed  Google Scholar 

  11. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using 11C-methionine, [18F]fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008;29:1176–82.

    Article  CAS  PubMed  Google Scholar 

  12. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10:1–18.

    Article  PubMed  Google Scholar 

  13. De Witte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95:746–50.

    Article  PubMed  Google Scholar 

  14. Kim S, Chung J-K, Im S-H, Jeong JM, Lee DS, Kim DG, et al. 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nuc Med Mol Imaging. 2005;32:52–9.

    Article  CAS  Google Scholar 

  15. Im HJ, Pak K, Cheon GJ, Kang KW, Kim SJ, Kim IJ, et al. Prognostic value of volumetric parameters of 18F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging. 2015;42:241–51.

    Article  CAS  PubMed  Google Scholar 

  16. Kim YI, Cheon GJ, Paeng JC, Cho JY, Kwak C, Kang KW, et al. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous F-fluorocholine PET/MRI for primary prostate cancer characterization. Eur J Nucl Med Mol Imaging. 2015. doi:10.1007/s00259-015-3026-5.

    Google Scholar 

  17. Galldiks N, Ullrich R, Schroeter M, Fink GR, Jacobs AH, Kracht LW. Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging. 2010;37:84–92.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Galldiks N, Dunkl V, Kracht LW, Vollmar S, Jacobs AH, Fink GR, et al. Volumetry of [11C]-methionine positron emission tomographic uptake as a prognostic marker before treatment of patients with malignant glioma. Mol Imaging. 2012;11:516–27.

    CAS  PubMed  Google Scholar 

  19. Borbely K, Nyary I, Toth M, Ericson K, Gulyas B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci. 2006;246:85–94.

    Article  CAS  PubMed  Google Scholar 

  20. Shishido H, Kawai N, Miyake K, Yamamoto Y, Nishiyama Y, Tamiya T. Diagnostic value of 11C-methionine (MET) and 18F-fluorothymidine (FLT) positron emission tomography in recurrent high-grade gliomas; differentiation from treatment-induced tissue necrosis. Cancers (Basel). 2012;4:244–56.

    Article  CAS  Google Scholar 

  21. Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Del Fiore G, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med. 1998;39:778–85.

    CAS  PubMed  Google Scholar 

  22. Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol. 2006;27:1432–7.

    CAS  PubMed  Google Scholar 

  23. Kim YI, Kim SK, Paeng JC, Lee HY. Comparison of F-18-FDG PET/CT findings between pancreatic solid pseudopapillary tumor and pancreatic ductal adenocarcinoma. Eur J Radiol. 2014;83:231–5.

    Article  PubMed  Google Scholar 

  24. Im HJ, Kim YK, Kim YI, Lee JJ, Lee WW, Kim SE. Usefulness of combined metabolic-volumetric indices of 18F-FDG PET/CT for the early prediction of neoadjuvant chemotherapy outcomes in breast cancer. Nucl Med Mol Imaging. 2013;47:36–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, et al. Prognostic value of volume-based measurements on C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging. 2015. doi:10.1007/s00259-015-3046-1.

    PubMed Central  Google Scholar 

  26. Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of l-methyl-C-11-methionine (MET) uptake with l-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99:217–25.

    Article  CAS  PubMed  Google Scholar 

  27. Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg. 2003;99:467–73.

    Article  PubMed  Google Scholar 

  28. Antonelli M, Buttarelli FR, Arcella A, Nobusawa S, Donofrio V, Oghaki H, et al. Prognostic significance of histological grading, p53 status, YKL-40 expression, and IDH1 mutations in pediatric high-grade gliomas. J Neurooncol. 2010;99:209–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

Conflict of Interest

Min Young Yoo, Jin Chul Paeng, Gi Jeong Cheon, Dong Soo Lee, June-Key Chung, E. Edmund Kim and Keon Wook Kang declare that they have no conflict of interest.

Ethical Statement

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study design was approved by the Institutional Review Board of Seoul National University Hospital (1504-046-663). The manuscript has not been published before, is not under consideration for publication anywhere else and has been approved by all coauthors.

Informed Consent

Written informed consents were waived by the Institutional Review Board of Seoul National University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Chul Paeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, M.Y., Paeng, J.C., Cheon, G.J. et al. Prognostic Value of Metabolic Tumor Volume on 11C-Methionine PET in Predicting Progression-Free Survival in High-Grade Glioma. Nucl Med Mol Imaging 49, 291–297 (2015). https://doi.org/10.1007/s13139-015-0362-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-015-0362-0

Keywords

Navigation