Clinical section
Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEPModifications du développement du système visuel chez l'homme reflétées par la latence du potentiel évoqué visuel à une inversion de pattern

https://doi.org/10.1016/0013-4694(83)90002-0Get rights and content

Abstract

Pattern reversal visually evoked potentials (VEPs) were recorded from 439 infants and young children ranging in age from 1 month to 5 years in response to large and small checks. Qualitative analysis of the VEP wave form showed that the first major positive component, P1, is consistently present at all ages, while the frequency of occurrence of later positive components is more variable. The proportion of infants showing late positive components increases with age; by 1 year, the frequency of occurrence of late components for large checks is more adult-like than for small checks.

The latency of P1 was analyzed quantitatively. Results showed that P1 latency decreases rapidly during the first year of life for both large and small checks and that the time course of the latency change differs as a function of check size. VEPs to large checks attain adult-like P1 latency values by about 1 year of age, while the P1 latency of VEPs to small checks has still not reached adult levels by 5 years of age.

Data from 12 infants tested longitudinally between 1 and 7 months of age using both checkerboards and square wave gratings show no difference in P1 latency between checkerboards and gratings comprised of large (30–240 min) pattern elements, but for patterns with small (7.5 and 15 min) elements, P1 latency to checks is significantly longer than P1 latency to stripes. These results are explained on the basis of the difference in the fundamental spatial frequency between checks and stripes.

Résumé

On a enregistré chez 439 nouveau-nés et jeunes enfants dont l'âge variait de 1 mois à 5 ans, les potentiels évoqués visuels à une inversion de pattern avec des échiquiers à petites ou grandes cases. Une analyse qualitative de la forme des PEV a montré que la première composante positive majeure, P1, est présente de façon stable à tous les âges, alors que la fréquence d'apparition des composantes positives tardives est plus variable. La proportion de nouveau-nés présentant des composantes positives tardives augmente avec l'âge: à 1 an, la fréquence d'apparition des composantes tardives pour des échiquiers à larges cases est plus proche de celle des adultes que pour des échiquiers à petites cases. La latence de P1 a été analysée quantitativement. Les résultats ont montré que la latence de P1 diminue rapidement pendant la première année, que ce soit pour des échiquiers à larges ou petites cases et que le décours temporel des modifications de latence varie en fonction de la taille des cases. Les PEV atteignent une configuration semblable à celle des adultes pour la latence de P1 à environ 1 an, alors que la latence de P1 dans les PEV à de petites cases n'a toujours pas atteint un niveau adulte à 5 ans.

Les données provenant de 12 nouveau-nés testés longitudinalement entre 1 et 7 mois en utilisant des échiquiers et des réseaux rectangulaires ont montré qu'il n'existe pas de différence pour la latence de P1 entre les échiquiers et les réseaux formés d'éléments larges (30 à 240 min); mais pour des patterns formés de petits éléments (7,5 à 15 min), la latence de P1 est significantivement plus longue pour l'échiquier que pour les bandes.

Ces résultats sont interprétés sur la base des différences dans la fréquence spatiale fondamentale entre échiquier et raies.

References (58)

  • J. Gwiazda et al.

    Infant visual acuity and its meridional variation

    Vision Res.

    (1978)
  • M.R. Harter et al.

    Attention to pattern orientation: negative cortical potentials, reaction time, and the selection process

    Electroenceph. clin. Neurophysiol.

    (1980)
  • M.J. Hofmann et al.

    Evidence for visual memory in the averaged and single evoked potentials of human infants

    Infant. Behav. Develop.

    (1981)
  • P. Lennie

    Parallel visual pathways: a review

    Vision Res.

    (1980)
  • J.G. May et al.

    Effects of meridional variation on steady-state visual evoked potentials

    Vision Res.

    (1979)
  • D.L. Mayer et al.

    Visual acuity development in infants and young children, as assessed by operant preferential looking

    Vision Res.

    (1982)
  • A. Moskowitz et al.

    Spatial and temporal interaction of pattern-evoked cortical potentials in human infants

    Vision Res.

    (1980)
  • D.M. Parker et al.

    Latency changes in the human visual evoked response to sinusoidal gratings

    Vision Res.

    (1977)
  • M. Pirchio et al.

    Infant contrast sensitivity evaluated by evoked potentials

    Brain Res.

    (1978)
  • D.M. Regal

    Development of critical flicker frequency in human infants

    Vision Res.

    (1981)
  • S. Sokol

    Measurement of infant visual acuity from pattern reversal evoked potentials

    Vision Res.

    (1978)
  • S. Sokol et al.

    Implicit time of pattern evoked potentials in infants: an index of maturation of spatial vision

    Vision Res.

    (1979)
  • S. Sokol et al.

    Age-related changes in the latency of the visual evoked potential: influence of check size

    Electroenceph. clin. Neurophysiol.

    (1981)
  • I. Abramov et al.

    The retina of the newborn human infant

    Science

    (1982)
  • S. Appelle

    Perception and discrimination as a function of stimulus orientation: the ‘oblique effect’ in man and animals

    Psychol. Bull.

    (1972)
  • E.E. Birch et al.

    Visual acuity and its meridional variations in children aged 7 to 60 months

    Vision Res.

    (1983)
  • B.G. Breitmeyer et al.

    Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing

    Psychol. Rev.

    (1976)
  • A.H. Bunt et al.

    Monkey retinal ganglion cells: morphometric analysis and tracing of axonal projections, with consideration of the peroxidase technique

    J. comp. Neurol.

    (1975)
  • Vries-Khoe L.H. De et al.

    Maturation of luminance and pattern EPs in man

  • Cited by (105)

    • Visual evoked potential latencies of three-year-old children prenatally exposed to buprenorphine or methadone compared with non-opioid exposed children: The results of a longitudinal study

      2015, Neurotoxicology and Teratology
      Citation Excerpt :

      One reason for this difference may be that much of this research has centred on much younger infants and children, with the majority of studies assessing children younger than 18 months of age (Bell et al., 2013; Hamilton et al., 2010; Hansen et al., 1993; McGlone et al., 2014; McGlone et al., 2008; Scher et al., 1998). Changes in visual maturation appear to continue to develop well into childhood (Hansen et al., 1993; Moskowitz and Sokol, 1983) and myelination of the optic nerve may continue until at least 5 years of age (Moskowitz and Sokol, 1983; Taylor and McCulloch, 1992). Previous research has found that early differences in VEP P100 latencies of preterm and term infants in response to flash stimuli were no longer observable at six months post-birth (Uysal et al., 1993); whilst Scher et al. (1988) found transient delays in visual maturation for infants with prenatal substance exposure.

    • Orientation-reversal VEP: Comparison of phase and peak latencies in adults and infants

      2012, Vision Research
      Citation Excerpt :

      This frequency dependence indicates that the dynamics of the cortical orientation response change with development. In infant visual development, the latency of the first positive peak (P1) of the transient PR response for large checks decreases from around 260 ms at birth to around 107 ms (adult values) at 4 months (Lee et al., 2012; McCulloch, Orbach, & Skarf, 1999; Moskowitz & Sokol, 1983; Porciatti, 1984). However, the latency of the OR-VEP has not yet been studied.

    • Visual Evoked Potentials in Infants and Children

      2012, Aminoff's Electrodiagnosis in Clinical Neurology
    View all citing articles on Scopus
    1

    This research was supported by NEI Research Grant EY00926 and Career Development Award EY70275 to S.S.

    View full text