Skip to main content
Log in

Models for Assessment of Angiogenesis in Gliomas

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

In the last two decades, much attention has been focussed on mechanisms of glioma vascularization including the investigation of growth factors and receptors involved. Recently, these efforts resulted in various approaches for antiangiogenic treatment of experimental brain tumors. These basic science and preclinical trials need an assortment of models, which should allow investigating a variety of questions. Several objectives concerning basic endothelial cell (EC) characteristics can adequately be studied in vitro using EC monolayer assays. Three-dimensional spheroid techniques respect the more complex cell–cell and cell–environment interplay within a three-dimensional culture. To optimize the imitation of the crucial interaction of human gliomas with host endothelial cells, immunological cells and extracellular matrix, animal models are mandatory. An essential rule is to utilize an orthotopic model, since tumor–host interaction is organ specific. To avoid alloimmunogenic responses, it is desirable to use weakly or not immunogenic glioma grafts, what is best accomplished in a syngeneic model. However, since rat gliomas poorly resemble human glioma growth patterns, human glioma xenografting into immunocompromized animals should be considered. In vivo monitoring techniques like videoscopy via a cranial window or magnetic resonance imaging (MRI) allow for functional studies and improve the validity of the model employed. Finally, it is essentially to recognize the limitations of each model considered and to select that model, which seems to be most appropriate for the objectives to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Plate KH: Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58: 313, 1999

    Google Scholar 

  2. Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845, 1992

    Google Scholar 

  3. Kleihues P, Burger PC, Scheithauer BW: The new WHO classification of brain tumours. Brain Pathol 3: 255, 1993

    Google Scholar 

  4. Goldbrunner RH, Bernstein JJ, Plate KH, Vince GH, Roosen K, Tonn JC: Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms. J Neurosci Res 55: 486, 1999

    Google Scholar 

  5. Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha HJ, Dehio C: A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18: 363, 1999

    Google Scholar 

  6. Plate KH, Warnke PC: Vascular endothelial growth factor. J Neuro-Oncol 35: 365, 1997

    Google Scholar 

  7. Pepper MS, Mandriota SJ, Jeltsch M, Kumar V, Alitalo K: Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol 177: 439, 1998

    Google Scholar 

  8. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis (see comments). Cell 87: 1171, 1996

    Google Scholar 

  9. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD: Isolation of angiopoietin-l, a ligand for the TIE2 receptor, by secretion-trap expression cloning (see comments). Cell 87: 1161, 1996

    Google Scholar 

  10. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994, 1999

    Google Scholar 

  11. Mandriota SJ, Pepper MS: Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83: 852, 1998

    Google Scholar 

  12. Stratmann A, Risau W, Plate KH: Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis (see comments). Am J Pathol 153: 1459, 1998

    Google Scholar 

  13. Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, Lamszus K: Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84: 10, 1999

    Google Scholar 

  14. Weindel K, Moringlane JR, Marme D, Weich HA: Detection and quantification of vascular endothelial growth factor/vascular permeability factor in brain tumor tissue and cyst fluid: the key to angiogenesis? Neurosurgery 35: 439, 1994

    Google Scholar 

  15. Schelling ME, Meininger CJ, Hawker JRJ, Granger HJ: Venular endothelial cells from bovine heart. Am J Physiol 254: H1211, 1988

    Google Scholar 

  16. Bowman PD, Betz AL, Goldstein GW: Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin coated substrate and plasma derived serum. In Vitro 18: 626, 1982

    Google Scholar 

  17. Kuzuya M, Satake S, Esaki T, Yamada K, Hayashi T, Naito M, Asai K, Iguchi A: Induction of angiogenesis by smooth muscle cell-derived factor: possible role in neovascularization in atherosclerotic plaque. J Cell Physiol 164: 658, 1995

    Google Scholar 

  18. Jaffe EA, Nachman RL, Becker CG, Minick CR: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52: 2745, 1973

    Google Scholar 

  19. Risau W: Differentiation of endothelium. FASEB J 9: 926, 1995

    Google Scholar 

  20. Garlanda C, Dejana E: Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 17: 1193, 1997

    Google Scholar 

  21. Davison PM, Bensch K, Karasek MA: Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J Invest Dermatol 75: 316, 1980

    Google Scholar 

  22. Kern PA, Knedler A, Eckel RH: Isolation and culture of microvascular endothelium from human adipose tissue. J Clin Invest 71: 1822, 1983

    Google Scholar 

  23. Gupta K, Ramakrishnan S, Browne PV, Solovey A, Hebbel RP: A novel technique for culture of human dermal microvascular endothelial cells under either serum-free or serum-supplemented conditions: isolation by panning and stimulation with vascular endothelial growth factor. Exp Cell Res 230: 244, 1997

    Google Scholar 

  24. DeBault LE, Kahn LE, Frommes SP, Cancilla PA: Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterization. In Vitro 15: 473, 1979

    Google Scholar 

  25. Bowman PD, Betz AL, Ar D, Wolinsky JS, Penney JB, Shivers RR, Goldstein GW: Primary culture of capillary endothelium from rat brain. In Vitro 17: 353, 1981

    Google Scholar 

  26. Goetz IE, Warren J, Estrada C, Roberts E, Krause DN: Long-term serial cultivation of arterial and capillary endothelium from adult bovine brain. In Vitro Cell Dev Biol 21: 172, 1985

    Google Scholar 

  27. Vinters HV, Reave S, Costello P, Girvin JP, Moore SA: Isolation and culture of cells derived from human cerebral microvessels. Cell Tissue Res 249: 657, 1987

    Google Scholar 

  28. Dorovini-Zis K, Prameya R, Bowman PD: Culture and characterization of microvascular endothelial cells derived from human brain. Lab Invest 64: 425, 1991

    Google Scholar 

  29. Rojiani AM, Dorovini-Zis K: Glomeruloid vascular structures in glioblastoma multiforme: an immunohistochemical and ultrastructural study. J Neurosurg 85: 1078, 1996

    Google Scholar 

  30. Maruno M, Yoshimine T, Isaka T, Kuroda R, Ishii H, Hayakawa T: Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J Neuro-Oncol 19: 155, 1994

    Google Scholar 

  31. Gladson CL: Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55: 1143, 1996

    Google Scholar 

  32. Gingras MC, Roussel E, Bruner JM, Branch CD, Moser RP: Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol 57: 143, 1995

    Google Scholar 

  33. Costello P, Del Maestro R: Human cerebral endothelium: isolation and characterization of cells derived from microvessels of non-neoplastic and malignant glial tissue. J Neuro-Oncol 8: 231, 1990

    Google Scholar 

  34. Mawatari M, Kohno K, Mizoguchi H, Matsuda T, Asoh K, Van Damme J, Welgus HG, Kuwano M: Effects of tumor necrosis factor and epidermal growth factor on cell morphology, cell surface receptors, and the production of tissue inhibitor of metalloproteinases and IL-6 in human microvascular endothelial cells. J Immunol 143: 1619, 1989

    Google Scholar 

  35. Pepper MS, Ferrara N, Orci L, Montesano R: Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189: 824, 1992

    Google Scholar 

  36. Mawatari M, Okamura K, Matsuda T, Hamanaka R, Mizoguchi H, Higashio K, Kohno K, Kuwano M: Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp Cell Res 192: 574, 1991

    Google Scholar 

  37. Anand-Apte B, Pepper MS, Voest E, Montesano R, Olsen B, Murphy G, Apte SS, Zetter B: Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3 (see comments). Invest Ophthalmol Vis Sci 38: 817, 1997

    Google Scholar 

  38. Puyraimond A, Weitzman JB, Babiole E, Menashi S: Examining the relationship between the gelatinolytic balance and the invasive capacity of endothelial cells. J Cell Sci 112: 1283, 1999

    Google Scholar 

  39. Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen BR: Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 18: 4414, 1999

    Google Scholar 

  40. Sankar S, Mahooti-Brooks N, Bensen L, McCarthy TL, Centrella M, Madri JA: Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 97: 1436, 1996

    Google Scholar 

  41. Montesano R, Orci L: Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42: 469, 1985

    Google Scholar 

  42. Abe T, Okamura K, Ono M, Kohno K, Mori T, Hori S, Kuwano M: Induction of vascular endothelial tubular morphogenesis by human glioma cells. A model system for tumor angiogenesis. J Clin Invest 92: 54, 1993

    Google Scholar 

  43. Laterra J, Guerin C, Goldstein GW: Astrocytes induce neural microvascular endothelial cells to form capillary-like structures in vitro. J Cell Physiol 144: 204, 1990

    Google Scholar 

  44. Sato Y, Shimada T, Takaki R: Autocrinological role of basic fibroblast growth factor on tube formation of vascular endothelial cells in vitro. Biochem Biophys Res Commun 180: 1098, 1991

    Google Scholar 

  45. Goto F, Goto K, Weindel K, Folkman J: Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels (see comments). Lab Invest 69: 508, 1993

    Google Scholar 

  46. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC: Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79: 213, 1999

    Google Scholar 

  47. Ment LR, Stewart WB, Scaramuzzino D, Madri JA: An in vitro three-dimensional coculture model of cerebral microvascular angiogenesis and differentiation. In Vitro Cell Dev Biol Anim 33: 684, 1997

    Google Scholar 

  48. Haas TL, Davis SJ, Madri JA: Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273: 3604, 1998

    Google Scholar 

  49. Nicosia RF, Tchao R, Leighton J: Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro 18: 538, 1982

    Google Scholar 

  50. Brown KJ, Maynes SF, Bezos A, Maguire DJ, Ford MD, Parish CR: A novel in vitro assay for human angiogenesis. Lab Invest 75: 539, 1996

    Google Scholar 

  51. Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO: Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 72: 463, 1990

    Google Scholar 

  52. Tonn JC, Haugland HK, Saraste J, Roosen K, Laerum OD: Differential effects of vincristine and phenytoin on the proliferation, migration, and invasion of human glioma cell lines. J Neurosurg 82: 1035, 1995

    Google Scholar 

  53. Paulus W, Huettner C, Tonn JC: Collagens, integrins and the mesenchymal drift in glioblastomas: a comparison of biopsy specimens, spheroid and early monolayer cultures. Int J Cancer 58: 841, 1994

    Google Scholar 

  54. Lund-Johansen M, Engebraaten O, Bjerkvig R, Laerum OD: Invasive glioma cells in tissue culture. Anticancer Res 10: 1135, 1990

    Google Scholar 

  55. Desbaillets I, Diserens AC, Tribolet N, Hamou MF, Van Meir EG: Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 186: 1201, 1997

    Google Scholar 

  56. Vernon RB, Sage EH: A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvase Res 57: 118, 1999

    Google Scholar 

  57. Barth RF, Moeschberger ML: Rat brain tumor models and the statistical evaluation of survival data in experimental neuro-oncology. In: Chiocca EA, Breakefield XO (eds) Gene therapy for Neurological Disorders and Brain Tumors, Totowa, NJ, Humana Press, 1997, p 313

    Google Scholar 

  58. Barth RF: Rat brain tumor models in experimental neurooncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neuro-Oncol 36: 91, 1998

    Google Scholar 

  59. Peterson DL, Sheridan PJ, Brown WEJ: Animal models for brain tumors: historical perspectives and future directions. J Neurosurg 80: 865, 1994

    Google Scholar 

  60. Goldbrunner RH, Bernstein JJ, Tonn JC: Cell-extracellular matrix interaction in glioma invasion. Acta Neurochir (Wien) 141: 295, 1999

    Google Scholar 

  61. Val-Bernal F, Ruiz JC, Cotorruelo JG, Arias M: Glioblastoma multiforme of donor origin after renal transplantation: report of a case (see comments). Hum Pathol 24: 1256, 1993

    Google Scholar 

  62. Mella O, Bjerkvig R, Schem BC, Dahl O, Laerum OD: A cerebral glioma model for experimental therapy and in vivo invasion studies in syngeneic BD IX rats. J Neuro-Oncol 9: 93, 1990

    Google Scholar 

  63. Plate KH, Breier G, Millauer B, Ullrich A, Risau W: Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53: 5822, 1993

    Google Scholar 

  64. Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM: Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58: 4654, 1998

    Google Scholar 

  65. Kim B, Chenevert TL, Ross BD: Growth kinetics and treatment response of the intracerebral rat 9L brain tumor model: a quantitative in vivo study using magnetic resonance imaging. Clin Cancer Res 1: 643, 1995

    Google Scholar 

  66. Chenevert TL, MeKeever PE, Ross BD: Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 3: 1457, 1997

    Google Scholar 

  67. Teicher BA, Holden SA, Ara G, Dupuis NP, Liu F, Yuan J, Ikebe M, Kakeji Y: Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int J Cancer 6l: 732, 1995

    Google Scholar 

  68. Machem MR, Risau W, Plate KH: Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum Gene Ther 10: 1117, 1999

    Google Scholar 

  69. Moore A, Marecos E, Simonova M, Weissleder R, Bogdanov AJ: Novel gliosarcoma cell line expressing green fluorescent protein: A model for quantitative assessment of angiogenesis. Microvasc Res 56: 145, 1998

    Google Scholar 

  70. Benda P, Lightbody J, Sato G, Levine L, Sweet W: Differentiated rat glial cell strain in tissue culture. Science 26: 370, 1968

    Google Scholar 

  71. Krum JM, Rosenstein JM: VEGF mRNA and its receptor fit-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 154: 57, 1998

    Google Scholar 

  72. Abramovitch R, Marikovsky M, Meir G, Neeman M: Stimulation of tumour angiogenesis by proximal wounds: spatial and temporal analysis by MRI. Br J Cancer 77: 440, 1998

    Google Scholar 

  73. Abramovitch R, Dafni H, Smouha E, Benjamin LE, Neeman M: In vivo prediction of vascular susceptibility to vascular susceptibility endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice. Cancer Res 59: 5012, 1999

    Google Scholar 

  74. Guillamo JS, Lisovoski F, Lefrancois T, Tardy M, Peschanski M: GL15 human glioblastoma cells implanted into the rat brain: a model to study tumor cell migration. J. Neuro-Oncol. 39: 115, 1998 (Abstract)

    Google Scholar 

  75. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jam RK: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54: 4564, 1994

    Google Scholar 

  76. Stan AC, Nemati MN, Pietsch T, Walter GF, Dietz H: In vivo inhibition of angiogenesis and growth of the human U-87 malignant glial tumor by treatment with an antibody against basic fibroblast growth factor. J Neurosurg 82: 1044, 1995

    Google Scholar 

  77. Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM, Cavenee WK: Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93: 8502, 1996

    Google Scholar 

  78. Bernsen HJ, Rijken PF, Peters JP, Bakker H, van der Kogel AJ: Delayed vascular changes after antiangiogenic therapy with antivascular endothelial growth factor antibodies in human glioma xenografts in nude mice. Neurosurgery 43: 570, 1998

    Google Scholar 

  79. Ma J, Fei ZL, Klein-Szanto A, Gallo JM: Modulation of angiogenesis by human glioma xenograft models that differentially express vascular endothelial growth factor. Clin Exp Metastasis 16: 559, 1998

    Google Scholar 

  80. Im SA, Gomez-Manzano C, Fueyo J, Liu TJ, Ke LD, Kim JS, Lee HY, Steck PA, Kyritsis AP, Yung WK: Antiangiogenesis treatment for gliomas: transfer of antisensevascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res 59: 895, 1999

    Google Scholar 

  81. Van Meir E, Sawamura Y, Diserens AC, Hamou MF, de Tribolet N: Human glioblastoma cells release interleukin 6 in vivo and in vitro. Cancer Res 50: 6683, 1990

    Google Scholar 

  82. Tada M, de Tribolet N: Recent advances in immunobiology of brain tumors. J Neuro-Oncol 17: 261, 1993

    Google Scholar 

  83. Bernstein JJ, Woodard CA: Glioblastoma cells do not intravasate into blood vessels. Neurosurgery 36: 124, 1995

    Google Scholar 

  84. Engebraaten O, Hjortland GO, Hirschberg H, Fodstad O: Growth of precultured human glioma specimens in nude rat brain. J Neurosurg 90: 125, 1999

    Google Scholar 

  85. Shweiki D, Neeman M, Itin A, Keshet E: Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92: 768, 1995

    Google Scholar 

  86. Dellian M, Witwer BP, Salehi HA, Yuan F, Jam RK: Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment (see comments). Am J Pathol 149: 59, 1996

    Google Scholar 

  87. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, Jam RK: Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 52: 6553, 1992

    Google Scholar 

  88. Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD: Characterization of angiogenesis and microcirculation of high-grade ghoma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 18: 510, 1998

    Google Scholar 

  89. Vajkoczy P, Goldbrunner R, Farhadi M, Vince G, Schilling L, Tonn JC, Schmiedek P, Menger MD: Glioma cell migration is associated with glioma-induced angiogenesis in vivo (In Process Citation). Int J Dev Neurosci 17: 557, 1999

    Google Scholar 

  90. Gohongi T, Fukumura D, Boucher Y, Yun CO, Soff GA, Compton C, Todoroki T, Jain RK: Tumor-host interaction in the gall-bladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor betal. Nat Med 5: 1203, 1999

    Google Scholar 

  91. Raila FA, Bowles APJ, Perkins E, Terrell A: Sequential imaging and volumetric analysis of an intracerebral C6 glioma by means of a clinical MRI system. J Neuro-Oncol 43: 11, 1999

    Google Scholar 

  92. Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM: NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40: 793, 1998

    Google Scholar 

  93. Brasch R, Pham C, Shames D, Roberts T, van Dijke K, van Bruggen N, Mann J, Ostrowitzki S, Melnyk O: Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 7: 68, 1997

    Google Scholar 

  94. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC: Detection of tumor angiogenesis in vivo by alpha Vbeta3-targeted magnetic resonance imaging. Nat Med 4: 623, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldbrunner, R.H., Wagner, S., Roosen, K. et al. Models for Assessment of Angiogenesis in Gliomas. J Neurooncol 50, 53–62 (2000). https://doi.org/10.1023/A:1006462504447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006462504447

Navigation