Skip to main content
Log in

Antiangiogenesis – Therapeutic Strategies and Clinical Implications for Brain Tumors

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The poor prognosis of patients with malignant brain tumors in spite of aggressive multimodality therapy has led to the search for novel therapeutic strategies. Among the targets for such treatment approaches, tumor angiogenesis has captured the attention of not only the medical field but also of the lay public because of its conceptual departure from traditional methods of cancer therapy. Angiogenesis and vascular proliferation are particularly important in the growth and progression of malignant gliomas and are used as indicators of the degree of malignancy. Recent studies have helped us gain a better understanding of the molecular mediators of this process. It is now evident that after the initial formation of malignancy the continued growth of a glioma is critically dependent on its angiogenic potential. Hence, several approaches to control angiogenesis are being developed and tested. In the present review, we examine some of these approaches from a therapeutic perspective and summarize the findings from early human trials of such agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Korff T, Augustin HG: Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112: 3249-3258, 1999

    Google Scholar 

  2. Yoshida A, Anand-Apte B, Zetter BR: Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13: 57-64, 1996

    Google Scholar 

  3. Wesseling P, Ruiter DJ, Burger PC: Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neuro-Oncol 32: 253-265, 1997

    Google Scholar 

  4. Burri PH, Dbaly J, Weibel ER: The postnatal growth of the rat lung. I. Morphometry. Anat Rec 178: 711-730, 1974

    Google Scholar 

  5. Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D, Chisholm V, Hillan KJ, Schwall RH: Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 4: 336-340, 1998

    Google Scholar 

  6. Hobson B, Denekamp J: Endothelial proliferation in tumors and normal tissues: continuous labeling studies. Br J Cancer 49: 405-413, 1984

    Google Scholar 

  7. Ausprunk DH, Folkman J: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53-65, 1977

    Google Scholar 

  8. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182-1186, 1971

    Google Scholar 

  9. Davis GE, Camarillo CW: Regulation of endothelial cell morphogenesis by integrins, mechanical forces, and matrix guidance pathways. Exp Cell Res 216: 113-123, 1995

    Google Scholar 

  10. Ingber DE, Prusty D, Sun Z, Betensky H, Wang N: Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech 28: 1471-1484, 1995

    Google Scholar 

  11. Jang YC, Arumugam S, Gibran NS, Isik FF: Role of alpha V integrins and angiogenesis during wound repair. Wound Repair Regen 7: 375-380, 1999

    Google Scholar 

  12. Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845-848, 1992

    Google Scholar 

  13. Puduvalli VK, Yung AWK: New frontiers in therapy of malignant gliomas. Forum (Genova) 8: 261-269, 1998

    Google Scholar 

  14. Daumas-Duport C, Scheithauer B, O'Fallon J, Kelly P: Grading of astrocytomas. A simple and reproducible method. Cancer 62: 2152-2165, 1988

    Google Scholar 

  15. Plate KH, Mennel HD: Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 47: 89-94, 1995

    Google Scholar 

  16. Kurimoto M, Endo S, Hirashima Y, Nishijima M, Takaku A: Elevated plasma basic fibroblast growth factor in brain tumor patients. Neurol Med Chir (Tokyo) 36: 865-868; discussion 869, 1996

    Google Scholar 

  17. Shweiki D, Neeman M, Itin A, Keshet E: Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92: 768-772, 1995

    Google Scholar 

  18. Folkman J: Angiogenesis and angiogenesis inhibition: an overview. EXS 79: 1-8, 1997

    Google Scholar 

  19. Hutchinson JW, Tierney GM, Parsons SL, Davis TR: Dupuytren's disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J Bone Joint Surg Br 80: 907-908, 1998

    Google Scholar 

  20. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152: 1445-1452, 1998

    Google Scholar 

  21. Burke PA, Lehmann-Bruinsma K, Powell JS: Vascular endothelial growth factor causes endothelial proliferation after vascular injury. Biochem Biophys Res Commun 207: 348-354, 1995

    Google Scholar 

  22. Nelson NJ: Inhibitors of angiogenesis enter phase III testing. J Natl Cancer Inst 90: 960-963, 1998

    Google Scholar 

  23. Gradishar WJ: An overview of clinical trials involving inhibitors of angiogenesis and their mechanism of action. Invest New Drugs 15: 49-59, 1997

    Google Scholar 

  24. Folkman J: Antiangiogenic gene therapy. Proc Natl Acad Sci USA 95: 9064-9066, 1998

    Google Scholar 

  25. Gradishar WJ: Endpoints for determination of efficacy of antiangiogenic agents in clinical trials. In: Teicher BA (ed) Antiangiogenic Agents in Cancer Therapy. Humana Press Inc., Totowa, NJ, 1999, pp 341-353

    Google Scholar 

  26. Eckhardt SG, Pluda JM: Development of angiogenesis inhibitors for cancer therapy. Invest New Drugs 15: 1-3, 1997

    Google Scholar 

  27. D'Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082-4085, 1994

    Google Scholar 

  28. Kusaka M, Sudo K, Matsutani E, Kozai Y, Marui S, Fujita T, Ingber D, Folkman J: Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470). Br J Cancer 69: 212-216, 1994

    Google Scholar 

  29. Wilson JT, Penar PL: The effect of AGM-1470 in an improved intracranial 9L gliosarcoma rat model. Neurol Res 16: 121-124, 1994

    Google Scholar 

  30. Chaplin DJ, Pettit GR, Hill SA: Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res 19: 189-195, 1999

    Google Scholar 

  31. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, Dennis MF, Chaplin DJ: Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res 59: 1626-1634, 1999

    Google Scholar 

  32. Nihei Y, Suga Y, Morinaga Y, Ohishi K, Okano A, Ohsumi K, Hatanaka T, Nakagawa R, Tsuji T, Akiyama Y, Saito S, Hori K, Sato Y, Tsuruo T: A novel combretastatin A-4 derivative, AC-7700, shows marked antitumor activity against advanced solid tumors and orthotopically transplanted tumors. Jpn J Cancer Res 90: 1016-1025, 1999

    Google Scholar 

  33. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315-328, 1994

    Google Scholar 

  34. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285, 1997

    Google Scholar 

  35. Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM: Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58: 4654-4659, 1998

    Google Scholar 

  36. Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, Plate KH: Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57: 3860-3864, 1997

    Google Scholar 

  37. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843-845, 1992

    Google Scholar 

  38. Plate KH, Breier G, Weich HA, Mennel HD, Risau W: Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59: 520-529, 1994

    Google Scholar 

  39. Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM, Cavenee WK: Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93: 8502-8507, 1996

    Google Scholar 

  40. Saleh M, Stacker SA, Wilks AF: Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 56: 393-401, 1996

    Google Scholar 

  41. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367: 576-579, 1994

    Google Scholar 

  42. Borgstrom P, Bourdon MA, Hillan KJ, Sriramarao P, Ferrara N: Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 35: 1-10, 1998

    Google Scholar 

  43. Runting AS, Stacker SA, Wilks AF: Tie2, a putative protein tyrosine kinase from a new class of cell surface receptor. Growth Factors 9: 99-105, 1993

    Google Scholar 

  44. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD: Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161-1169, 1996

    Google Scholar 

  45. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55-60, 1997

    Google Scholar 

  46. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD: Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171-1180, 1996

    Google Scholar 

  47. Holash J, Wiegand SJ, Yancopoulos GD: New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356-5362, 1999

    Google Scholar 

  48. Stratmann A, Risau W, Plate KH: Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153: 1459-1466, 1998

    Google Scholar 

  49. Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG: Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 95: 8829-8834, 1998

    Google Scholar 

  50. Bjerkvig R, Lund-Johansen M, Edvardsen K: Tumor cell invasion and angiogenesis in the central nervous system. Curr Opin Oncol 9: 223-229, 1997

    Google Scholar 

  51. Yamamoto M, Sawaya R, Mohanam S, Rao VH, Bruner JM, Nicolson GL, Rao JS: Expression and localization of urokinase-type plasminogen activator receptor in human gliomas. Cancer Res 54: 5016-5020, 1994

    Google Scholar 

  52. Mohanam S, Wang SW, Rayford A, Yamamoto M, Sawaya R, Nakajima M, Liotta LA, Nicolson GL, Stetler-Stevenson WG, Rao JS: Expression of tissue inhibitors of metalloproteinases: negative regulators of human glioblastoma invasion in vivo. Clin Exp Metastasis 13: 57-62, 1995

    Google Scholar 

  53. Primrose JN, Bleiberg H, Daniel F, Van Belle S, Mansi JL, Seymour M, Johnson PW, Neoptolemos JP, Baillet M, Barker K, Berrington A, Brown PD, Millar AW, Lynch KP: Marimastat in recurrent colorectal cancer: exploratory evaluation of biological activity by measurement of carcinoembryonic antigen. Br J Cancer 79: 509-514, 1999

    Google Scholar 

  54. Steward WP: Marimastat (BB2516): current status of development. Cancer Chemother Pharmacol 43 Suppl: S56-S60, 1999

    Google Scholar 

  55. Santos O, McDermott CD, Daniels RG, Appelt K: Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin Exp Metastasis 15: 499-508, 1997

    Google Scholar 

  56. Mizejewski GJ: Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med 222: 124-138, 1999

    Google Scholar 

  57. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA: Definition of two angiogenic pathways by distinct alpha V integrins. Science 270: 1500-1502, 1995

    Google Scholar 

  58. Stromblad S, Cheresh DA: Integrins, angiogenesis and vascular cell survival. Chem Biol 3: 881-885, 1996

    Google Scholar 

  59. Brooks PC, Clark RA, Cheresh DA: Requirement of vascular integrin alpha V beta 3 for angiogenesis. Science 264: 569-571, 1994

    Google Scholar 

  60. Drake CJ, Cheresh DA, Little CD: An antagonist of integrin alpha V beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108: 2655-2661, 1995

    Google Scholar 

  61. Horton MA: The alpha V beta 3 integrin 'vitronectin receptor'. Int J Biochem Cell Biol 29: 721-725, 1997

    Google Scholar 

  62. Gladson CL: Expression of integrin alpha V beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55: 1143-1149, 1996

    Google Scholar 

  63. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA: Antiintegrin alpha V beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 96: 1815-1822, 1995

    Google Scholar 

  64. Kerr JS, Wexler RS, Mousa SA, Robinson CS, Wexler EJ, Mohamed S, Voss ME, Devenny JJ, Czerniak PM, Gudzelak AJ, Slee AM: Novel small molecule alpha V integrin antagonists: comparative anti-cancer efficacy with known angiogenesis inhibitors. Anticancer Res 19: 959-968, 1999

    Google Scholar 

  65. Wu H, Beuerlein G, Nie Y, Smith H, Lee BA, Hensler M, Huse WD, Watkins JD: Stepwise in vitro affinity maturation of Vitaxin, an alpha V beta3-specific humanized mAb. Proc Natl Acad Sci USA 95: 6037-6042, 1998

    Google Scholar 

  66. Kang IC, Lee YD, Kim DS: A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res 59: 3754-3760, 1999

    Google Scholar 

  67. Sheu JR, Yen MH, Kan YC, Hung WC, Chang PT, Luk HN: Inhibition of angiogenesis in vitro and in vivo: comparison of the relative activities of triflavin, an Arg-Gly-Asp containing peptide and anti-alpha V beta 3 integrin monoclonal antibody. Biochim Biophys Acta 1336: 445-454, 1997

    Google Scholar 

  68. Juliano D, Wang Y, Marcinkiewicz C, Rosenthal LA, Stewart GJ, Niewiarowski S: Disintegrin interaction with alpha V beta 3 integrin on human umbilical vein endothelial cells: expression of ligand-induced binding site on beta 3 subunit. Exp Cell Res 225: 132-142, 1996

    Google Scholar 

  69. Yeh CH, Peng HC, Huang TF: Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alpha V beta 3 antagonist and inducing apoptosis. Blood 92: 3268-3276, 1998

    Google Scholar 

  70. van der Zee R, Murohara T, Passeri J, Kearney M, Cheresh DA, Isner JM: Reduced intimal thickening following alpha V beta 3 blockade is associated with smooth muscle cell apoptosis. Cell Adhes Commun 6: 371-379, 1998

    Google Scholar 

  71. Hong WK, Itri LM: Retinoids and human cancer. In: Sporn MD, Roberts AB, Goodman DS (eds) The Retinoid: Biology, Chemistry, and Medicine, 2nd ed. Raven Press, New York, 1994, pp 597-602

    Google Scholar 

  72. Lachgar S, Charveron M, Gall Y, Bonafe JL: Inhibitory effects of retinoids on vascular endothelial growth factor production by cultured human skin keratinocytes. Dermatology 199 (Suppl 1): 25-27, 1999

    Google Scholar 

  73. Liaudet-Coopman ED, Berchem GJ, Wellstein A: In vivo inhibition of angiogenesis and induction of apoptosis by retinoic acid in squamous cell carcinoma. Clin Cancer Res 3: 179-184, 1997

    Google Scholar 

  74. Zelent A: Molecular mechanisms of retinoid action. In: Degos L, Parkinson DR (eds) Retinoids in Oncology. Springer-Verlag, Berlin, 1995, pp 3-10

    Google Scholar 

  75. Bischoff ED, Gottardis MM, Moon TE, Heyman RA, Lamph WW: Beyond tamoxifen: the retinoid X receptor-selective ligand LGD1069 (TARGRETIN) causes complete regression of mammary carcinoma. Cancer Res 58: 479-484, 1998

    Google Scholar 

  76. Mukherjee R, Strasser J, Jow L, Hoener P, Paterniti JR Jr, Heyman RA: RXR agonists activate PPAR alpha-inducible genes, lower triglycerides, and raise HDL levels in vivo. Arterioscler Thromb Vasc Biol 18: 272-276, 1998

    Google Scholar 

  77. Kaba SE, Kyritsis AP, Conrad C, Gleason MJ, Newman R, Levin VA, Yung WK: The treatment of recurrent cerebral gliomas with all-trans-retinoic acid (tretinoin). J Neuro-Oncol 34: 145-151, 1997

    Google Scholar 

  78. Yung WK, Kyritsis AP, Gleason MJ, Levin VA: Treatment of malignant gliomas with high dose 13-cis retinoic acid. Clinical Cancer Research 2: 1931-1935, 1996

    Google Scholar 

  79. Puduvalli VK, Saito Y, Xu R, Kouraklis GP, Levin VA, Kyritsis AP: Fenretinide activates caspases and induces apoptosis in gliomas. Clin Cancer Res 5: 2230-2235, 1999

    Google Scholar 

  80. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B: An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666-3670, 1975

    Google Scholar 

  81. Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A: Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316: 552-554, 1985

    Google Scholar 

  82. Slowik MR, De Luca LG, Fiers W, Pober JS: Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration. Am J Pathol 143: 1724-1730, 1993

    Google Scholar 

  83. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M: Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 271: 28220-28228, 1996

    Google Scholar 

  84. Yeh CH, Peng HC, Huang TF: Cytokines modulate integrin alpha V beta 3-mediated human endothelial cell adhesion and calcium signaling. Exp Cell Res 251: 57-66, 1999

    Google Scholar 

  85. Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M: Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 17: 4015-4023, 1997

    Google Scholar 

  86. Qin H, Moellinger JD, Wells A, Windsor LJ, Sun Y, Benveniste EN: Transcriptional suppression of matrix metalloproteinase-2 gene expression in human astroglioma cells by TNF-alpha and IFN-gamma. J Immunol 161: 6664-6673, 1998

    Google Scholar 

  87. Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ: Evidence for the involvement of endothelial cell integrin alpha V beta 3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 4: 408-414, 1998

    Google Scholar 

  88. Kalvakolanu DV, Borden EC: An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 14: 25-53, 1996

    Google Scholar 

  89. Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ: Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 92: 4562-4566, 1995

    Google Scholar 

  90. Heyns AD, Eldor A, Vlodavsky I, Kaiser N, Fridman R, Panet A: The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Studies with vascular smooth muscle cells and endothelial cells. Exp Cell Res 161: 297-306, 1985

    Google Scholar 

  91. Chang E, Boyd A, Nelson CC, Crowley D, Law T, Keough KM, Folkman J, Ezekowitz RA, Castle VP: Successful treatment of infantile hemangiomas with interferonalpha-2b. J Pediatr Hematol Oncol 19: 237-244, 1997

    Google Scholar 

  92. Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT: Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 95: 8795-8800, 1998

    Google Scholar 

  93. Machein MR, Risau W, Plate KH: Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum Gene Ther 10: 1117-1128, 1999

    Google Scholar 

  94. Chen QR, Kumar D, Stass SA, Mixson AJ: Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 59: 3308-3312, 1999

    Google Scholar 

  95. Nguyen JT, Wu P, Clouse ME, Hlatky L, Terwilliger EF: Adeno-associated virus-mediated delivery of antiangiogenic factors as an antitumor strategy. Cancer Res 58: 5673-5677, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puduvalli, V.K., Sawaya, R. Antiangiogenesis – Therapeutic Strategies and Clinical Implications for Brain Tumors. J Neurooncol 50, 189–200 (2000). https://doi.org/10.1023/A:1006469830739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006469830739

Navigation