Skip to main content
Log in

Neuropsychological Findings in Congenital and Acquired Childhood Hydrocephalus

  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Hydrocephalus is an increase in cerebrospinal fluid volume that can be caused by a variety of etiologies. The most common connatal and acquired causes of hydrocephalus are spina bifida, aqueduct stenosis, and preterm low birthweight infants with ventricular hemorrhage. In general, the literature suggests mild neuropsychological deficits associated with hydrocephalus, which are predominant in visuospatial and motor functions, and other nonlanguage skills. Although the precise nature of the neuropsychological deficits in hydrocephalus are not completely known, several factors such as etiology, raised intracranial pressure, ventricular size, and changes in gray and white matter tissue composition as well as shunt treatment complications have been shown to influence cognition. In fact, the presence of complications and other brain abnormalities in addition to hydrocephalus such as infections, trauma, intraventricular hemorrhage, low birthweight, and asphyxia are important determinants of the ultimate cognitive status, placing the child at a high risk of cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Barkovich, J. A. (1995). Pediatric Neuroimaging (2nd edn.). Raven Press, New York.

    Google Scholar 

  • Baron, I. D., and Goldberger, E. (1993). Neuropsychological disturbances of hydrocephalic children with implications for special education and rehabilitation. Neuropsychological Rehabilitation 3: 389–410.

    Google Scholar 

  • Berker, E., Goldstein, G., Lorber, J., Priestley, B., and Smith, A. (1992). Reciprocal neurological developments of twins discordant for hydrocephalus. Developmental Medicine and Child Neurology 34: 623–632.

    Google Scholar 

  • Blaymore Bier, J. A., Morales, Y., Liebling, J., Geddes, L., and Kim, E. (1997). Medical and social factors associated with cognitive outcome in individuals with myelomeningocele. Developmental Medicine and Child Neurology 39: 263–266.

    Google Scholar 

  • Braun, K. P., Dijkhuizen, R. M., de Graaf, R. A., Nicolay, K., Vandertop, W. P., Gooskens, R. H., and Tulleken, K. A. (1997). Cerebral ischemia and white matter edema in experimental hydrocephalus: A combined in vivo MRI and MRS study. Brain Research 757: 295–298.

    Google Scholar 

  • Bret, P., and Chazal, J. (1995). Chronic (“normal pressure”) hydrocephalus in childhood and adolescence. A review of 16 cases and reappraisal of the syndrome. Child's Nervous System 11: 687–691.

    Google Scholar 

  • Caner, H., Atasever, A., Kilinc, K., Durgun, B., Peker, S., and Ozcan, O. E. (1993). Lipid peroxide level increase in experimental hydrocephalus. Acta Neurochirurgica 121: 68–71.

    Google Scholar 

  • Catalan, R., Sahuquillo, J., Poca, M. A., Molins, A., Castellanos, J. M., and Galard, R. (1994). Neuropeptide Y cerebrospinal fluid levels in patients with normal pressure hydrocephalus syndrome. Biological Psychiatry 36: 61–63.

    Google Scholar 

  • Chervenak, F. A., Duncan, C., Ment, L. R., Hobbins, J. C., McClure, M., Scott, D., and Berkowitz, R. L. (1984). Outcome of fetal ventriculomegaly. Lancet 2: 179–181.

    Google Scholar 

  • Da Silva, M. C., Drake, J. M., Lemaire, C., Cross, A., and Tuor, U. I. (1994). High-energy phosphate metabolism in a neonatal model of hydrocephalus before and after shunting. Journal of Neurosurgery 81: 544–553.

    Google Scholar 

  • Del Bigio, M. R. (1993). Neuropathological changes caused by hydrocephalus. Acta Neuropathologica 85: 573–585.

    Google Scholar 

  • Del Bigio, M. R., Crook, C. R., and Buist, R. (1997). Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: Pre-and postshunting observations. Experimental Neurology 148: 256–264.

    Google Scholar 

  • Dennis, M., Fitz, C. R., Netley, C. T., Sugar, J., HarwoodNash, D. C., Hendrick, E. B., Hoffman, H. J., and Humphreys, R. P. (1981). The intelligence of hydrocephalic children. Archives of Neurology 38: 607–615.

    Google Scholar 

  • Dennis, M., Hendrichk, B., Hoffman, H. J., and Humphreys, R. P. (1987). Language of hydrocephalic children and adolescents. Journal of Clinical and Experimental Neuropsychology 9: 593–621.

    Google Scholar 

  • Di Rocco, C., Caldarelli, M., Maira, G., and Rossi, G. F. (1977). The study of cerebrospinal fluid dynamics in apparently “arrested” hydrocephalus in children. Child's Brain 3: 359–374.

    Google Scholar 

  • Donders, J., Rourke, B. P., and Canady, A. I. (1991). Neuropsychological functioning of hydrocephalic children. Journal of Clinical and Experimental Neuropsychology 13: 607–613.

    Google Scholar 

  • Dykes, F. D., Dunbar, B., Lazarra, A., and Ahmann, P. A. (1989). Post-hemorrhagic hydrocephalus in high-risk preterm infants: Natural history, management, and long-term outcome. Journal of Pediatrics 114: 611–618.

    Google Scholar 

  • El Gammal, T., Allen, M. B., Brooks, B. S., and Mark, E. K. (1986). MR evaluation of hydrocephalus. American Journal of Neuroradiology 149: 807–813.

    Google Scholar 

  • Fernell, E., Gillberg, C., and von Wendt, L. (1991). Behavioural problems in children with infantile hydrocephalus. Developmental Medicine and Child Neurology 33: 388–395.

    Google Scholar 

  • Fletcher, J. M., Bohan, T. P., Brandt, M. E., Brookshine, B. L., Beaver, S. R., Francis, D. J., Davidson, K. C., Thompson, N. M., and Miner, M.E. (1992a). Cerebral white matter and cognition in hydrocephalic children. Archives of Neurology 49: 818–824.

    Google Scholar 

  • Fletcher, J. M., Bohan, T. P., Brandt, M. E., Kramer, L. A., Brookshire, B. L., Thorstad, K., Davidson, K. C., Francis, D. J., McCauley, S. R., and Baumgartner, J. E. (1996a). Morphometric evaluation of the hydrocephalic brain: Relationships with cognitive development. Child's Nervous System 12: 192–199.

    Google Scholar 

  • Fletcher, J. M., Brookshire, B. L., Bohan, T. P., Brandt, M. E., and Davidson, K. C. (1995). Early hydrocephalus. In Rourke, B. P. (ed.), Syndrome of Nonverbal Learning Disabilities. Neurodevelopmental Manifestations, Guildford Press, New York, pp. 206–238.

    Google Scholar 

  • Fletcher, J. M., Francis, D. J., Thompson, N. M., Brookshire, B. L., Bohan, T. P., Landry, S. H., Davidson, K. C., and Miner, M. E. (1992b). Verbal and nonverbal skill discrepancies in hydrocephalic children. Journal of Clinical and Experimental Neuropsychology 14: 593–609.

    Google Scholar 

  • Fletcher, J. M., Landry, S. H., Bohan, T. P., Davidson, K. C., Brookshire, B. L., Lachar, D., Kramer, L. A., and Francis, D. J. (1997). Effects of intraventricular hemorrhage and hydrocephalus on the long-term neurobehavioral development of preterm very-low-birthweight infants. Developmental Medicine and Child Neurology 39: 596–606.

    Google Scholar 

  • Fletcher, J. M., McCauley, S. R., Brandt, M. E., Bohan, T. P., Kramer, L. A., Francis, D. J., Thorstad, K., and Brookshire, B. L. (1996b). Regional brain tissue composition in children with hydrocephalus. Archives of Neurology 53: 549–557.

    Google Scholar 

  • Haddad, J., Constantinesco, A., Brunot, B., and Messer, J. (1994). A study of cerebral perfusion using single photon emission computed tomography in neonates with brain lesions. Acta Paediatrica 83: 265–269.

    Google Scholar 

  • Hagberg, B., and Sjögren, I. (1966). The chronic brain syndrome of infantile hydrocephalus. American Journal of Diseases of Children 112: 189–196.

    Google Scholar 

  • Hammock, M. K., Milhorat, T. H., and Baron, I. S. (1976). Normal pressure hydrocephalus in patients with myelomeningocele. Developemental Medicine and Child Neurology 37(Suppl.): 55–68.

    Google Scholar 

  • Hanigan, W. C., Morgan, A. M., Anderson, R. J., Bradle, P., Cohen, H. S., Cusack, T. J., Thomas-McCauley, T., and Miller, T. C. (1991). Incidence and neurodevelopmental outcome of periventricular hemorrhage and hydrocephalus in a regional population of very low birth weight infants. Neurosurgery 29: 701–706.

    Google Scholar 

  • Hanlo, P. W., Gooskens, R. J., van Schooneveld, M., Tulleken, C. A., van der Knaap, M. S., Faber, J. A., and Willemse, J. (1997). The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Developmental Medicine and Child Neurology 39: 286–291.

    Google Scholar 

  • Hannay, H. J. (2000). Functioning of the corpus callosum in children with early hydrocephalus. Journal of the International Neuropsychological Society 6: 351–361.

    Google Scholar 

  • Hirsch, J. F. (1992). Surgery of hydrocephalus: Past, present and future. Acta Neurochirurgica 116: 155–160.

    Google Scholar 

  • Hurley, A. D., Dorman, C., Laatsch, L., Bell, S., and D'Avignon, J. (1990). Cognitive functioning in patients with spina bifida, hydrocephalus, and the “cocktail party” syndrome. Developmental Neuropsychology 6: 151–172.

    Google Scholar 

  • Ito, J., Saijo, H., Araki, A., Tanaka, H., Tasaki, T., Cho, K., and Miyamoto, A. (1997). Neuroradiological assessment of visuoperceptual disturbance in children with spina bifida and hydrocephalus. Developmental Medicine and Child Neurology 39: 385–392.

    Google Scholar 

  • Kirkpatrick, M., Engleman, H., and Minns, R. A. (1989). Symptoms and signs of progressive hydrocephalus. Archives of Disease in Childhood 64: 124–128.

    Google Scholar 

  • Kokkonen, J., Serlo, W., Saukkonen, A.-L., and Juolasmaa, A. (1994). Long-term prognosis for children with shunted hydrocephalus. Child's Nervous System 10: 384–387.

    Google Scholar 

  • Kriebel, R. M., Shah, A. B., and McAllister, J. P., II. (1993). The microstructure of cortical neuropil before and after decompression in experimental infantile hydrocephalus. Experimental Neurology 119: 89–98.

    Google Scholar 

  • Larsson, A., Stephensen, H., and Wikkelso, C. (1999). Adult patients with “asymptomatic” and “compensated” hydrocephalus benefit from surgery. Acta Neurologica Scandinavica 99: 81–90.

    Google Scholar 

  • Laurence, K. M. (1958). The natural history of hydrocephalus. The Lancet 2: 1152–1154.

    Google Scholar 

  • Laurence, K. M., and Coates, S. (1962). The natural history of hydrocephalus. Detailed analysis of 182 unoperated cases. Archives of Disease in Childhood 37: 345–362.

    Google Scholar 

  • Levy, M. L., Masri, L. S., and McComb, J. G. (1997). Outcome for preterm infants with germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery 41: 1111–1118.

    Google Scholar 

  • Liechty, E. A., Bull, M. J., Bryson, C. Q., Kalsbeck, J. E., Jansen, R. D., Lemons, J. A., and Schreiner, R. L. (1983a). Developmental outcome of very low birth weight infants requiring a ventriculo-peritoneal shunt. Child's Brain 10: 340–349.

    Google Scholar 

  • Liechty, E. A., Gilmor, R. L., Bryson, C. Q., and Bull, M. J. (1983b). Outcome of high-risk neonates with ventriculomegaly. Developmental Medicine and Child Neurology 25: 162–168.

    Google Scholar 

  • Mataro, M., Poca, M. A., Sahuquillo, J., Cuxart, A., Iborra, J., De la Calzada, M. D., and Junque, C. (2000). Cognitive changes after cerebrospinal fluid shunting in young adults with spina bifida and assumed arrested hydrocephalus. Journal of Neurology, Neurosurgery and Psychiatry 68: 615–621.

    Google Scholar 

  • McAllister, J. P., II, Cohen, M. I., O'Mara, K. A., and Johnson, M. H. (1991). Progression of experimental infantile hydrocephalus and effects of ventriculoperitoneal shunts: An analysis correlating magnetic resonance imaging with gross morphology. Neurosurgery 29: 329–340.

    Google Scholar 

  • McCullough, D. C., and Balzer-Martin, L. A. (1982). Current prognosis in overt neonatal hydrocephalus. Journal of Neurosurgery 57: 378–383.

    Google Scholar 

  • McLone, D. G., Czyzewski, D., Raimondi, A. J., and Sommers, R. C. (1982). Central nervous system infections as a limiting factor in the intelligence of children with myelomeningocele. Pediatrics 70: 338–342.

    Google Scholar 

  • McLone, D. G., and Partington, M. D. (1993). Arrest and compensation of hydrocephalus. Neurosurgery Clinics of North America 4: 621–624.

    Google Scholar 

  • Nakada, J., Oka, N., Nagahori, T., Endo, S., and Takaku, A. (1992). Changes in the cerebral vascular bed in experimental hydrocephalus: An angioarchitectural and histological study. Acta Neurochirurgica 114: 43–50.

    Google Scholar 

  • Pikus, H. J., Levy, M. L., Gans, W., Mendel, E., and McComb, J. G. (1997). Outcome, cost analysis, and long-term follow-up in preterm infants with massive grade IV germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery 40: 983–989.

    Google Scholar 

  • Prigatano, G. P., Zeiner, H. K., Pollay, M., and Kaplan, R. J. (1983). Neuropsychological functioning in children with shunted uncomplicated hydrocephalus. Child's Brain 10: 112–120.

    Google Scholar 

  • Rosseau, G. L., McCullogh, D. C., and Joseph, A. L. (1992). Current prognosis in fetal ventriculomegaly. Journal of Neurosurgery 77: 551–555.

    Google Scholar 

  • Shirane, R., Sato, S., Sato, K., Kameyama, M., Ogawa, A., Yoshimoto, T., Hatazawa, J., and Ito, M. (1992). Cerebral blood flowand oxygen metabolism in infants with hydrocephalus. Child's Nervous System 8: 118–123.

    Google Scholar 

  • Suda, K., Sato, K., Takeda, N., Miyazawa, T., and Arai, H. (1994). Early ventriculoperitoneal shunt effects on learning ability and synaptogenesis of the brain in congenitally hydrocephalic HTX rats. Child's Nervous System 10: 19–23.

    Google Scholar 

  • Tashiro, Y., and Drake, J. M. (1998). Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: Implications for intellectual impairment in hydrocephalus. Journal of Neurosurgery 88: 709–717.

    Google Scholar 

  • Tashiro, Y., Drake, J. M., Chakrabortty, S., and Hattori, T. (1997). Functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia of adult rat with kaolin-induced hydrocephalus. Brain Research 770: 45–52.

    Google Scholar 

  • Thompson, M. G., Eisenberg, H. M., and Levin, H. S. (1982). Hydrocephalic infants: Developmental assessment and computed tomography. Child's Brain 9: 400–410.

    Google Scholar 

  • Thomson, N. M., Fletcher, J. M., Chapieski, L., Landry, S. H., Miner, M. E., and Bixby, J. (1991). Cognitive and motor abilities in preschool hydrocephalics. Journal of Clinical and Experimental Neuropsychology 13: 245–258.

    Google Scholar 

  • Torkelson, R. D., Leibrock, L. G., Gustavson, J. L., and Sundell, R. R. (1985). Neurological and neuropsychological effects of cerebral spinal fluid shunting in children with assumed arrested (“normal pressure”) hydrocephalus. Journal of Neurology, Neurosurgery and Psychiatry 48: 799–806.

    Google Scholar 

  • Van der Knaap, M. S., Valk, J., Bakker, C. J., Schooneveld, M., Faber, J. A., Willemse, J., and Gooskens, R. H. (1991). Myelination as an expression of the functional maturity of the brain. Developmental Medicine and Child Neurology 33: 849–857.

    Google Scholar 

  • Villani, R., Tomei, G., Gaini, S. M., Grimoldi, N., Spagnoli, D., and Bello, L. (1995). Long-term outcome in aqueductal stenosis. Child's Nervous System 11: 180–185.

    Google Scholar 

  • Whittle, I. R., Johnston, I. H., and Besser, M. (1985). Intracranial pressure changes in arrested hydrocephalus. Journal of Neurosurgery 62: 77–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mataró, M., Junqué, C., Poca, M.A. et al. Neuropsychological Findings in Congenital and Acquired Childhood Hydrocephalus. Neuropsychol Rev 11, 169–178 (2001). https://doi.org/10.1023/A:1012904907249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012904907249

Navigation