Skip to main content
Log in

The effects of normal aging on myelin and nerve fibers: A review

  • Published:
Journal of Neurocytology

Abstract

It was believed that the cause of the cognitive decline exhibited by human and non-human primates during normal aging was a loss of cortical neurons. It is now known that significant numbers of cortical neurons are not lost and other bases for the cognitive decline have been sought. One contributing factor may be changes in nerve fibers. With age some myelin sheaths exhibit degenerative changes, such as the formation of splits containing electron dense cytoplasm, and the formation on myelin balloons. It is suggested that such degenerative changes lead to cognitive decline because they cause changes in conduction velocity, resulting in a disruption of the normal timing in neuronal circuits. Yet as degeneration occurs, other changes, such as the formation of redundant myelin and increasing thickness suggest of sheaths, suggest some myelin formation is continuing during aging. Another indication of this is that oligodendrocytes increase in number withage.

In addition to the myelin changes, stereological studies have shown a loss of nerve fibers from the white matter of the cerebral hemispheres of humans, while other studies have shown a loss of nerve fibers from the optic nerves and anterior commissure in monkeys. It is likely that such nerve fiber loss also contributes to cognitive decline, because of the consequent decrease in connections between neurons.

Degeneration of myelin itself does not seem to result in microglial cells undertaking phagocytosis. These cells are probably only activated when large numbers of nerve fibers are lost, as can occur in the optic nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, M. (1993) Neuropsychological and neurophysiological changes in healthy adult humans across the age range. Neurobiology of Aging 14, 623–625.

    PubMed  Google Scholar 

  • Albert, M. & Moss, M. B. (1996) Neuropsychology of aging: Findings in humans and monkeys. In Handbook of the Biology of Aging, 4th ed. (edited by Schneider, E. L., Rowe, J. W. & Morris, J. H.) pp. 217–233. San Diego: Academic Press.

    Google Scholar 

  • Andersen, A. H., Zhang, Z., Zhang, M., Gash, D. M. & Avison, M. J. (1999) Age-associated changes in rhesus CNS composition identified by MRI. Brain Research 829, 90–98.

    PubMed  Google Scholar 

  • Anderson, T. J., Schneider, A., Barrie, L. A., Klugman, M., McCulloch, M. C., Kirkman, D., Kyriades, E., Nave, K. A. & Griffiths, I. R. (1998) Late onset neurodegeneration in mice with increased dosage of the proteolipid protein gene. Journal of Comparative Neurology 394, 506–519.

    PubMed  Google Scholar 

  • Aston-Jones, G., Rogers, J., Shaver, R. D., Dinan, T. G. & Moss, D. E. (1985) Age-impaired impulse flow from nucleus basalis to cortex. Nature 318, 462–464.

    PubMed  Google Scholar 

  • Bachevalier, J., Landis, L. S., Walker, L. C., Brickso, M., Mishkin, M., Price, D. L. & Cork, L. C. (1991) Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiology of Aging 12, 99–111.

    PubMed  Google Scholar 

  • Blakemore, W. F. (1978) Observations on remyelination in the rabbit spinal cord following demyelination induced by lysolecithin. Neuropathology and Applied Neurobiology 4, 47–59.

    PubMed  Google Scholar 

  • Brizzee, K. R. (1973) Quantitative studies of aging changes in cerebral cortex of rhesus monkey and albino rat with notes on effects of prolonged low-dose radiation in the rat. Progress in Brain Research 40, 141–160.

    PubMed  Google Scholar 

  • Brizzee, K. R., Klara, P. & Johnson, J. (1975) Changes in microanatomy, neurocytology and fine structure with aging. In Neurobiology of Aging (edited by Ordy, J. M. & Brizzee, K. R.) pp. 574–594. New York: Plenum Press.

    Google Scholar 

  • Brody, H. D. (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. Journal of Comparative Neurology 102, 511–516.

    PubMed  Google Scholar 

  • Brody, H. D. (1970) Structural changes in the aging nervous system. Interdisciplinary Topics in Gerontology 7, 9–21.

    Google Scholar 

  • Carroll, W. M. & Jennings, A. R. (1994) Early recruitment of oligodendrocyte precursors in CNS demyelination. Brain 117, 563–578.

    PubMed  Google Scholar 

  • Carroll, W. M., Jennings, A. R. & Ironside, L. J. (1998) Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121, 293–302.

    PubMed  Google Scholar 

  • Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Susuki, K. & Popko, B. (1996) Myelination in the absence of galactocerebroside and sulfatide: Normal structure with abnormal function and regional instability. Cell 86, 209–219.

    PubMed  Google Scholar 

  • Coetzee, T., Susuki, K. & Popko, B. (1998) New perspectives on the function of myelin galactolipids. Trends in Neuroscience 21, 126–130.

    Article  Google Scholar 

  • Degroot, J. C., Deleeuw, F.-E., Oudkerk, M., van Gijn, J., Hofman, A., Jolles, J. & Breteler, M. (2000) Cerebral white matter lesions and cognitive function: The Rotterdam scan study. Annals of Neurology 47, 145–151.

    PubMed  Google Scholar 

  • Faddis, B. T. & McGinn, M. D. (1997) Spongiform degeneration of the gerbil cochlear nucleus: An ultrastructural and immunohistochemical evaluation. Journal of Neurocytology 26, 625–635.

    PubMed  Google Scholar 

  • Feldman, M. L. & Peters, A. (1998) Ballooning of myelin sheaths in normally aged macaques. Journal of Neurocytology 27, 605–614.

    PubMed  Google Scholar 

  • Felts, P. A., Baker, T. A. & Smith, K. J. (1997) Conduction along segmentally demyelinated mammalian central axons. Journal of Neuroscience 17, 7267–7277.

    PubMed  Google Scholar 

  • Franson, P. & Ronnevi, L.-O. (1989) Myelin breakdown in the posterior funiculus of the kitten after dorsal rhizotomy: A qualitative and quantitative light and electron microscopic study. Anatomy and Embryology 180, 273–280.

    PubMed  Google Scholar 

  • GutiÉrrez, R., Bioson, D., Heinemann, U. & Stoffel, W. (1995) Decompaction of CNS myelin leads to a reduction of the conduction velocity of action potentials in optic nerve. Neuroscience Letters 195, 93–96.

    PubMed  Google Scholar 

  • Guttman, C. R. G., Jolesz, F. A., Kikinis, R., Killiany, R. J., Moss, M. B., Sandor, T. & Albert, M. S. (1998) White matter changes with normal aging. Neurology 50, 972–978.

    PubMed  Google Scholar 

  • Haug, H. (1984) Macroscopic and microscopic morphometry of the human brain and cortex. A survey in the light of new results. Brain Pathology 1, 123–149.

    Google Scholar 

  • Haug, H. (1985) Are neurons of the human cerebral cortex really lost during aging? A morphometric examination. In Senile dementia of the Alzheimer type (edited by Taber, J. & Gispen, W.) pp. 150–156. Berlin: Springer-Verlag.

    Google Scholar 

  • Haug, H., KÜhl, S., Mecke, E., Sass, N.-L. & Wasner, K. (1984) The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. Journal f ür Hirnforschung 25, 353–374.

    Google Scholar 

  • Herndon, J., Moss, M. B., Killiany, R. J. & Rosene, D. L. (1997) Patterns of cognitive decline in early, advanced and oldest of the old aged rhesus monkeys. Behavioral Research 87, 25–34.

    Article  Google Scholar 

  • Hirano, A. (1969) The fine structure of the brain in edema. In The Structure and Function of Nervous Tissue, Vol. 2 (edited by Bourne, G. H.) pp. 69–135. New York: Academic Press.

    Google Scholar 

  • Hull, J. McC. & Blakemore, W. F. (1974) Chronic copper poisoning and changes in the central nervous system of sheep. Acta Neuropathologica 29, 9–24.

    PubMed  Google Scholar 

  • Jones, L. J., Yamaguchi, Y., Stallcup, W. B. & Tuszynski, M. H. (2002) NG2 is a major chrondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. Journal of Neuroscience 22, 2792–2803.

    PubMed  Google Scholar 

  • Juurlink, B. H. J., Thorburne, S. K. & Hertz, L. (1998) Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22, 371–378.

    PubMed  Google Scholar 

  • Kemper, T. L. (1994) Neuroanatomical and neuropathological changes during aging and dementia. In Clinical Neurology of Aging (edited by Albert, M. L. & Knoefel, J. E.) pp. 3–67. New York: Oxford University Press.

    Google Scholar 

  • Kreutzberg, G. W., Blakemore, W. F. & Graeber, M. B. (1998) Cellular pathology of the central nervous system. In Greenfield's Neuropathology, 6th ed. (edited by Graham, D. I. & Lantos, P. L.) pp. 85–156. London: Arnold.

    Google Scholar 

  • Lai, Z. C., Rosene, D. L., Killiany, R. J., Pugliese, D., Albert, M. S. & Moss, M. B. (1995) Agerelated changes in the brain of the rhesus monkey: MRI changes in white matter but not gray matter. Society for Neuroscience, Abstracts 21, 1564.

    Google Scholar 

  • Lassmann, H., Bartsch, U., Montag, D. & Schachner, M. (1997) Dying-back oligodendrogliopathy: A late sequel of myelin-associated glycoprotein deficiency. Glia 19, 104–110.

    PubMed  Google Scholar 

  • Levine, J. M., Reynolds, R. & Fawcett, J. W. (2001) The oligodendrocyte precursor cell in health and disease. Trends in Neuroscience 24, 39–47.

    Article  Google Scholar 

  • Levine, S. M. & Torres, M. V. (1992) Morphological features of degenerating oligodendrocytes in twitcher mice. Brain Research 587, 348–352.

    PubMed  Google Scholar 

  • Levison, S. W., Young, G. M. & Goldman, J. E. (1999) Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. Journal of Neuroscience Research 57, 435–446.

    PubMed  Google Scholar 

  • Lintl, P. & Braak, H. (1983) Loss of intracortical myelinated fibers: A distinctive alteration in the human striate cortex. Acta Neuropathologica 61, 178–182.

    PubMed  Google Scholar 

  • Ludwin, S. K. (1978) Central nervous system demyelination and remyelination in the mouse. An ultrastructural study of cuprizone toxicity. Laboratory Investigation 39, 597–612.

    PubMed  Google Scholar 

  • Ludwin, S. K. (1995) Pathology of the myelin sheath. In The Axon: Structure, Function and Pathophysiology (edited by Waxman, S. G., Kocsis, J. D. & Stys, P. K.) pp. 412–437. New York: Oxford University Press.

    Google Scholar 

  • Ludwin, S. K. (1997) The pathobiology of the oligodendrocyte. Journal of Neuropathology and Experimental Neurology 56, 111–124.

    PubMed  Google Scholar 

  • Ludwin, S. K. & Bakker, D. A. (1988) Can oligodendrocytes attached to myelin proliferate? Journal of Neuroscience 8, 1239–1244.

    PubMed  Google Scholar 

  • Malamud, N. & Hirano, A. (1973) Atlas of Neuropathology. Berkeley: University of California Press.

    Google Scholar 

  • Moniki, E. S. & Lemke, G. (1995) Molecular biology of myelination. In The Axon: Structure, Function and Pathophysiology (edited byWaxman, S. G., Kocsis, J. D. & Stys, P. K.) pp. 144–163. New York: Oxford University Press.

    Google Scholar 

  • Morales, F. R., Boxer, P. A., Fung, S. J. & Chase, M. H. (1987) Basic electrophysiological properties of spinal cord motoneurons during old age in the cat. Journal of Neurophysiology 58, 180–194.

    PubMed  Google Scholar 

  • Morrison, J. H. & Hof, P. R. (1997) Life and death of neurons in the aging brain. Nature 278, 412–419.

    Article  Google Scholar 

  • Moss, M. B., Killiany, R. J. & Herndon, J. G. (1999) Age-related cognitive decline in rhesus monkey. In Neurodegenerative and Age-Related Changes in Structure and Function of the Cerebral Cortex. Cerebral Cortex, Vol. 14 (edited by Peters, A. & Morrison, J. H.) pp. 21–48. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Moss, M. B., Killiany, R. J., Lai, Z. C., Rosene, D. L. & Herndon, J. G. (1997) Recognition span in rhesus monkeys of advanced age. Neurobiology of Aging 18, 13–19.

    PubMed  Google Scholar 

  • Nielsen, K. & Peters, A. (2000) The effects of aging on the frequency of nerve fibers in rhesus monkey striate cortex. Neurobiology of Aging 21, 621–628.

    PubMed  Google Scholar 

  • Norton, W. T. (1996) Do oligodendrocytes divide? Neurochemical Research 21, 495–503.

    PubMed  Google Scholar 

  • O'sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C. R. & Markus, H. S. (2001) Evidence for cortical “disconnection” is a mechanism of age-related cognitive decline. Neurology 57, 632–638.

    PubMed  Google Scholar 

  • Pakkenberg, B. & Gundersen, H. J. G. (1997) Neocortical neuron number in humans: Effect of sex and age. Journal of Comparative Neurology 384, 312–320.

    PubMed  Google Scholar 

  • Parnavelas, J. G. (1999) Glial cells lineages in the rat cerebral cortex. Experimental Neurology. 156, 418–429.

    PubMed  Google Scholar 

  • Peters, A. (1960) The formation and structure of myelin sheaths in the central nervous system. Journal of Biophysical and Biochemical Cytology 8, 431–446.

    PubMed  Google Scholar 

  • Peters, A. (1964) Observations on the connexions between myelin sheaths and glial cells in the optic nerves of young rats. Journal of Anatomy 98, 125–134.

    PubMed  Google Scholar 

  • Peters, A. (1996) Age-related changes in oligodendrocytes in monkey cerebral cortex. Journal of Comparative Neurology 371, 153–163.

    PubMed  Google Scholar 

  • Peters, A., Josephson, K. & Vincent, S. L. (1991) Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anatomical Record 229, 384–398.

    PubMed  Google Scholar 

  • Peters, A., Morrison, J. H., Rosene, D. L. & Hyman, B. T. (1998) Are neurons lost from the primate cerebral cortex during aging? Cerebral Cortex 8, 295–300.

    PubMed  Google Scholar 

  • Peters, A., Moss, M. B. & Sethares, C. (2000) The effects of aging on myelinated nerve fibers in monkey primary visual cortex. Journal of Comparative Neurology 419, 364–376.

    PubMed  Google Scholar 

  • Peters, A., Nigro, N. J. & Mcnally, K. J. (1997) A further evaluation of the effects of age on striate cortex of the rhesus monkey. Neurobiology of Aging 18, 29–36.

    PubMed  Google Scholar 

  • Peters, A. & Sethares, C. (2002) Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. Journal of Comparative Neurology 442, 277–291.

    PubMed  Google Scholar 

  • Peters, A. & Sethares, C. (2003) Is there remyelination during aging of the primate central nervous system? Journal of Comparative Neurology. Accepted for publication.

  • Peters, A., Sethares, C. & Killiany, R. J. (2001) Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. Journal of Comparative Neurology 435, 241–248.

    PubMed  Google Scholar 

  • Rosenbluth, J. (1966) Redundant myelin sheaths and other ultrastructural features of the toad cerebellum. Journal of Cell Biology 28, 73–93.

    PubMed  Google Scholar 

  • Sandell, J. H. & Peters, A. (2001) Effects of age on nerve fibers in the rhesus monkey optic nerve. Journal of Comparative Neurology 429, 541–553.

    PubMed  Google Scholar 

  • Sandell, J. H. & Peters, A. (2002) Effects of age on the glial cells in the rhesus monkey optic nerve. Journal of Comparative Neurology 445, 13–28.

    PubMed  Google Scholar 

  • Sloane, J. A., Hollander, W., Moss, M. B., Rosene, D. L. & Abraham, C. R. (1999) Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiology of Aging 20, 395–405.

    PubMed  Google Scholar 

  • Sturrock, R. R. (1976) Changes in neuroglia and myelination in the white matter of aging mice. Journal of Gerontology 31, 513–522.

    PubMed  Google Scholar 

  • Tamura, E. & Parry, G. J. (1994) Severe radicular pathology in rats with longstanding diabetes. Journal of Neurological Science 127, 29–35.

    Article  Google Scholar 

  • Tang, Y., Nyengaard, J. R., Pakkenberg, B. & Gundersen, H. J. G. (1997) Age-induced white matter changes in the human brain: A stereological investigation. Neurobiology of Aging 18, 609–615.

    PubMed  Google Scholar 

  • Terry, R. D., Deteresa, R. & Hansen, L. A. (1987) Neocortical cell counts in normal human adult aging. Annals of Neurology 21, 530–539.

    PubMed  Google Scholar 

  • Tigges, J., Gordon, T. P., McClure, H. M., Hall, E. C. & Peters, A. (1988) Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center. American Journal of Primatology 15, 263–272.

    Article  Google Scholar 

  • Waxman, S. G., Kocsis, J. D. & Black, J. A. (1995) Pathophysiology of demyelinated axons. In The Axon: Structure, Function and Pathophysiology (edited by Waxman, S. G., Kocsis, J. D. & Stys, P. K.) pp. 438–461. New York: Oxford University Press.

    Google Scholar 

  • Xi, M.-C., Liu, R.-H., Engelhardt, K. K., Morales, F. R. & Chase, M. H. (1999) Changes in the axonal conduction velocity of pyramidal tract neurons in the aged cat. Neuroscience 92, 219–225.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, A. The effects of normal aging on myelin and nerve fibers: A review. J Neurocytol 31, 581–593 (2002). https://doi.org/10.1023/A:1025731309829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025731309829

Keywords

Navigation