Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The caudal limit of Otx2 expression positions the isthmic organizer

Abstract

The homeobox gene Otx2 is expressed in the anterior neural tube with a sharp limit at the midbrain/hindbrain junction (the isthmic organizer)1. Otx2 inactivation experiments have shown that this gene is essential for the development of its expression domain2. Here we investigate whether the caudal limit of Otx2 expression is instrumental in positioning the isthmic organizer and in specifying midbrain versus hindbrain fate, by ectopically expressing Otx2 in the presumptive anterior hindbrain using a knock-in strategy into the En1 locus. Transgenic offspring display a cerebellar ataxia. Morphological and histological studies of adult transgenic brains reveal that most of the anterior cerebellar vermis is missing, whereas the inferior colliculus is complementarily enlarged. During early neural pattern formation expression of the midbrain markers Wnt1 and Ephrin-A5, the isthmic organizer markers Pax2 and Fgf-8 and the hindbrain marker Gbx2 are shifted caudally in the presumptive hindbrain territory. These findings show that the caudal limit of Otx2 expression is sufficient for positioning the isthmic organizer and encoding caudal midbrain fate within the mid/hindbrain domain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Knock-in strategy of Otx2IRESlacZ (Otx2lacZ) into the En1 locus.
Figure 2: Ectopic expression of Otx2 results in phenotypic alterations of midbrain and cerebellum.
Figure 3: Ectopic expression of Otx2 results in phenotypic alterations at E15.
Figure 4: RNA in situ hybridization of mid/hindbrain-specific markers in wild-type (En1+/lacZ; a, c, e, f, i) and mutants (En1+/Otx2lacZ; b, d, g, h, j) in a lateral (a–d) and dorsal view (e–j) at E10.5.
Figure 5: RNA in situ hybridization of mid/hindbrain-specific markers in control En1+/lacZ (a, c, e, g) and mutant En1+/Otx2lacZ (b, d, f, h) embryos at E9.5.
Figure 6: Genetic interactions leading to isthmic organizer (IsO) formation and mid/hindbrain specification.

Similar content being viewed by others

References

  1. Simeone,A., Acampora,D., Massino,G., Stornainolo,A. & Boncinelli,E. Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Acampora,D. & Simeone,A. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci. 22, 116–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Lumsden,A. & Krumlauf,R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Beddington,R. S. P. & Robertson,E. J. Anterior patterning in mouse. Trends Genet. 14, 277–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Ang, S.-L., Conlon,R. A., Jin,O. & Rossant,J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–2989 (1994).

    Google Scholar 

  6. Wassarman,K. M. et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124, 2923–2934 (1997).

    CAS  PubMed  Google Scholar 

  7. McMahon,A. P., Joyner,A. L., Bradley,A. & McMahon,J. A. The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Martinez,S., Crossley,P. H., Cobos,I., Rubenstein,J. L. R. & Martin,G. R. FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126, 1189–1200 (1999).

    CAS  Google Scholar 

  9. Bally-Cuif,L. & Wassef,M. Determination events in the nervous system of the vertebrate embryo. Curr. Opin. Genet. Dev. 5, 450–458 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Joyner,A. L. Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet. 12, 15–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Wassef,M. & Joyner,A. L. Early mesencephalon/metencephalon patterning and development of the cerebellum. Prospect. Dev. Neurobiol. 5, 3–16 (1997).

    CAS  Google Scholar 

  12. Martinez,S., Wassef,M. & Alvarado-Mallart,R. M. Induction of amesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Martinez,S., Marin,F., Nieto,M. A. & Puelles,L. Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech. Dev. 51, 289–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Meinhardt,H. Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol. 96, 375–385 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Davis,C. A. & Joyner,A. L. Expression patterns of the homeobox containing genes En1 and En2 and the proto-oncogene int-1 diverge during mouse development. Gen. Dev. 2, 1736–1744 (1988).

    Article  CAS  Google Scholar 

  16. Schwenk,F., Baron,U. & Rajewsky,K. A cre-transgenic mouse strain for ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucl. Acids Res. 24, 5080–5081 (1995).

    Article  Google Scholar 

  17. Millet,S., Bloch-Gallego,E., Simeone,A. & Alvarado-Mallart, R.-M. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick–quail homotopic grafts. Development 122, 3785–3797 (1996).

    CAS  PubMed  Google Scholar 

  18. Marin,F. & Puelles,L. Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur. J. Neurosci. 7, 1714–1738 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Danielian,P. S. & McMahon,A. P. Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, 332–334 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Lee,S. M. K., Danielian,P. S., Fritzsch,B. & McMahon,A. P. Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969 (1997).

    CAS  PubMed  Google Scholar 

  21. Meyers,E. N., Lewandoski,M. & Martin,G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet. 18, 136–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Reifers,F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998).

    CAS  Google Scholar 

  23. Lun,K. & Brand,M. A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signalling events in development of the midbrain-hindbrain boundary. Development 125, 3049–3062 (1998).

    CAS  Google Scholar 

  24. Wurst,W., Auerbach,A. B. & Joyner,A. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075 (1994).

    CAS  PubMed  Google Scholar 

  25. Schwarz,M., Alvarez-Bolado,G., Urbánek,P., Busslinger,M. & Gruss,P. Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: Evidence from targeted mutation. Proc. Natl Acad. Sci. USA 94, 14518–14523 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Acampora,D., Avantaggiato,V., Tuorto,F. & Simeone,A. Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124, 3639–3650 (1997).

    CAS  PubMed  Google Scholar 

  27. Suda,Y., Matsuo,I. & Aizawa,S. Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mech. Dev. 69, 125–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Hanks,M., Wurst,W., Anson-Cartwright,L., Auerbach,A. B. & Joyner,A. L. Rescue of the En1 mutant phenotype by replacement of En1 with En2. Science 269, 679–682 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Mallamaci,A., Di Blas,E., Briata,P., Boncinelli,E. & Corte,G. OTX2 homeoprotein in the developing central nervous system and migratory dells of the olfactory area. Mech. Dev. 58, 165–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Flenniken,A. M., Gale,N. W., Yancopoulos,G. D. & Wilkinson,D. G. Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev. Biol. 179, 382–401 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Bally-Cuif, J. Favor and M. Wassef for critically reading the manuscript; A. Nagy for R1 ES cells; G. Corte, R. Hawkes, A. Joyner, G. Martin, A. Mallamaci, A. Simeone and D. Wilkinson for antibodies and probes; K. Rajewski for the cre-expressing transgenic mouse line; P. Westphal, A. Drexler-Kurz and B. Klädtke for technical support; and S. Rengsberger and A. Maier for secretarial assistance and artwork. This work was supported by EU Biotech (W.W.), EU Biomed (E.B. and W.W.), HSFP (W.W.) and the Deutsche Forschungsgemeinschaft (SFP 190, W.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wurst.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broccoli, V., Boncinelli, E. & Wurst, W. The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401, 164–168 (1999). https://doi.org/10.1038/43670

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43670

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing