Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cellular effects of oncolytic viral therapy on the glioblastoma microenvironment

Abstract

The objective of the present study was to evaluate the cellular effects of the oncolytic HSV-1 based vector, G207, on the tumor microenvironment. We established progressively growing intracerebral xenografts in athymic nude rats generated from three different human GBM surgical specimens. The lesions were identified by MRI and subsequently injected with a concentrated vector stock. The animals were killed 10 or 30 days after G207 injection and the tumors were quantitatively evaluated for virus-induced changes in proliferation, apoptosis and vascularity. Moreover, we assessed vector spread as well as the infiltration pattern of CD68-positive inflammatory cells. In all G207-injected lesions, immunostaining identified widespread regions of viral infection and replication (plaques). Proliferation indices were significantly lower, whereas apoptotic counts were significantly elevated in plaques as compared with that in non-infected areas of the same lesions, as well as in corresponding control xenografts. Furthermore, there was a significant decline in the number of blood vessels in the plaques and the vascular area fractions were reduced. CD68-positive inflammatory cells accumulated in the plaques. The present study highlights the favorable cellular responses to G207 treatment seen from a clinical viewpoint, such as reduced tumor cell proliferation, more frequent events of tumor cell death and a strongly attenuated tumor vascular compartment. However, our results suggest that transduction of a significant volume of tumor tissue is essential, as these beneficial changes were only observed in areas of active viral replication, leaving non-transduced tumor tissues unaffected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL . Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  2. Goldstein DJ, Weller SK . Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 1988; 62: 196–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacobson JG, Leib DA, Goldstein DJ, Bogard CL, Schaffer PA, Weller SK et al. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 1989; 173: 276–283.

    Article  CAS  PubMed  Google Scholar 

  4. Hunter WD, Martuza RL, Feigenbaum F, Todo T, Mineta T, Yazaki T et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 1999; 73: 6319–6326.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sundaresan P, Hunter WD, Martuza RL, Rabkin SD . Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation in mice. J Virol 2000; 74: 3832–3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  7. Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 2009; 17: 199–207.

    Article  CAS  PubMed  Google Scholar 

  8. Grandi P, Peruzzi P, Reinhart B, Cohen JB, Chiocca EA, Glorioso JC . Design and application of oncolytic HSV vectors for glioblastoma therapy. Exp Rev Neurother 2009; 9: 505–517.

    Article  CAS  Google Scholar 

  9. Todo T, Martuza RL, Rabkin SD, Johnson PA . Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 2001; 98: 6396–6401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ino Y, Saeki Y, Fukuhara H, Todo T . Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res 2006; 12: 643–652.

    Article  CAS  PubMed  Google Scholar 

  11. Aghi M, Rabkin SD, Martuza RL . Angiogenic response caused by oncolytic herpes simplex virus-induced reduced thrombospondin expression can be prevented by specific viral mutations or by administering a thrombospondin-derived peptide. Cancer Res 2007; 67: 440–444.

    Article  CAS  PubMed  Google Scholar 

  12. Liu TC, Zhang T, Fukuhara H, Kuroda T, Todo T, Canron X et al. Dominant-negative fibroblast growth factor receptor expression enhances antitumoral potency of oncolytic herpes simplex virus in neural tumors. Clin Cancer Res 2006; 12: 6791–6799.

    Article  CAS  PubMed  Google Scholar 

  13. Liu TC, Zhang T, Fukuhara H, Kuroda T, Todo T, Martuza RL et al. Oncolytic HSV armed with platelet factor 4, an antiangiogenic agent, shows enhanced efficacy. Mol Ther 2006; 14: 789–797.

    Article  CAS  PubMed  Google Scholar 

  14. Aghi M, Rabkin S, Martuza RL . Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J Natl Cancer Inst 2006; 98: 38–50.

    Article  CAS  PubMed  Google Scholar 

  15. Advani SJ, Mezhir JJ, Roizman B, Weichselbaum RR . ReVOLT: radiation-enhanced viral oncolytic therapy. Int J Radiat Oncol Biol Phys 2006; 66: 637–646.

    Article  CAS  PubMed  Google Scholar 

  16. McKeever PE, Davenport RD, Shakui P . Patterns of antigenic expression of human glioma cells. Crit Rev Neurobiol 1991; 6: 119–147.

    CAS  PubMed  Google Scholar 

  17. Paulus W, Huettner C, Tonn JC . Collagens, integrins and the mesenchymal drift in glioblastomas: a comparison of biopsy specimens, spheroid and early monolayer cultures. Int J Cancer 1994; 58: 841–846.

    Article  CAS  PubMed  Google Scholar 

  18. Engebraaten O, Hjortland GO, Hirschberg H, Fodstad O . Growth of precultured human glioma specimens in nude rat brain. J Neurosurg 1999; 90: 125–132.

    Article  CAS  PubMed  Google Scholar 

  19. Mahesparan R, Read TA, Lund-Johansen M, Skaftnesmo KO, Bjerkvig R, Engebraaten O . Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol (Berl) 2003; 105: 49–57.

    CAS  Google Scholar 

  20. Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO . Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 1990; 72: 463–475.

    Article  CAS  PubMed  Google Scholar 

  21. Sakariassen PO, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci USA 2006; 103: 16466–16471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huszthy PC, Svendsen A, Wilson JM, Kotin RM, Lonning PE, Bjerkvig R et al. Widespread dispersion of adeno-associated virus serotype 1 and adeno-associated virus serotype 6 vectors in the rat central nervous system and in human glioblastoma multiforme xenografts. Hum Gene Ther 2005; 16: 381–392.

    Article  CAS  PubMed  Google Scholar 

  23. Thorsen F, Afione S, Huszthy PC, Tysnes BB, Svendsen A, Bjerkvig R et al. Adeno-associated virus (AAV) serotypes 2, 4 and 5 display similar transduction profiles and penetrate solid tumor tissue in models of human glioma. J Gene Med 2006; 8: 1131–1140.

    Article  CAS  PubMed  Google Scholar 

  24. Goplen D, Wang J, Enger PO, Tysnes BB, Terzis AJ, Laerum OD et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res 2006; 66: 9895–9902.

    Article  CAS  PubMed  Google Scholar 

  25. Huszthy PC, Goplen D, Thorsen F, Immervoll H, Wang J, Gutermann A et al. Oncolytic herpes simplex virus type-1 therapy in a highly infiltrative animal model of human glioblastoma. Clin Cancer Res 2008; 14: 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  26. Ruggeri ZM, Ware J . von Willebrand factor. FASEB J 1993; 7: 308–316.

    Article  CAS  PubMed  Google Scholar 

  27. Huszthy PC, Giroglou T, Tsinkalovsky O, Euskirchen P, Skaftnesmo KO, Bjerkvig R et al. Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy. PLoS One 2009; 4: e6314.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  29. Scholzen T, Gerdes J . The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000; 182: 311–322.

    Article  CAS  PubMed  Google Scholar 

  30. Plaat B, Kole A, Mastik M, Hoekstra H, Molenaar W, Vaalburg W . Protein synthesis rate measured with L-[1-11C]tyrosine positron emission tomography correlates with mitotic activity and MIB-1 antibody-detected proliferation in human soft tissue sarcomas. Eur J Nucl Med 1999; 26: 328–332.

    Article  CAS  PubMed  Google Scholar 

  31. Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K et al. Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 2008; 14: 2049–2055.

    Article  CAS  PubMed  Google Scholar 

  32. Neder L, Colli BO, Machado HR, Carlotti Jr CG, Santos AC, Chimelli L . MIB-1 labeling index in astrocytic tumors—a clinicopathologic study. Clin Neuropathol 2004; 23: 262–270.

    CAS  PubMed  Google Scholar 

  33. Torp SH . Diagnostic and prognostic role of Ki67 immunostaining in human astrocytomas using four different antibodies. Clin Neuropathol 2002; 21: 252–257.

    CAS  PubMed  Google Scholar 

  34. Ehmann GL, McLean TI, Bachenheimer SL . Herpes simplex virus type 1 infection imposes a G(1)/S block in asynchronously growing cells and prevents G(1) entry in quiescent cells. Virology 2000; 267: 335–349.

    Article  CAS  PubMed  Google Scholar 

  35. Hobbs 2nd WE, DeLuca NA . Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 1999; 73: 8245–8255.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Song B, Yeh KC, Liu J, Knipe DM . Herpes simplex virus gene products required for viral inhibition of expression of G1-phase functions. Virology 2001; 290: 320–328.

    Article  CAS  PubMed  Google Scholar 

  37. Burger PC . Malignant astrocytic neoplasms: classification, pathologic anatomy, and response to treatment. Semin Oncol 1986; 13: 16–26.

    CAS  PubMed  Google Scholar 

  38. Deckert M, Reifenberger G, Wechsler W . Determination of the proliferative potential of human brain tumors using the monoclonal antibody Ki-67. J Cancer Res Clin Oncol 1989; 115: 179–188.

    Article  CAS  PubMed  Google Scholar 

  39. Jaros E, Perry RH, Adam L, Kelly PJ, Crawford PJ, Kalbag RM et al. Prognostic implications of p53 protein, epidermal growth factor receptor, and Ki-67 labelling in brain tumours. Br J Cancer 1992; 66: 373–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koyama AH, Fukumori T, Fujita M, Irie H, Adachi A . Physiological significance of apoptosis in animal virus infection. Microbes Infect/Institut Pasteur 2000; 2: 1111–1117.

    Article  CAS  Google Scholar 

  41. Nguyen ML, Blaho JA . Apoptosis during herpes simplex virus infection. Adv Vir Res 2007; 69: 67–97.

    Article  CAS  Google Scholar 

  42. Shiozaki EN, Shi Y . Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 2004; 29: 486–494.

    Article  CAS  PubMed  Google Scholar 

  43. Cai W, Schaffer PA . Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol 1992; 66: 2904–2915.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Samaniego LA, Neiderhiser L, DeLuca NA . Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 1998; 72: 3307–3320.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cinatl Jr J, Michaelis M, Driever PH, Cinatl J, Hrabeta J, Suhan T et al. Multimutated herpes simplex virus g 207 is a potent inhibitor of angiogenesis. Neoplasia 2004; 6: 725–735.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A et al. Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther 2008; 16: 1382–1391.

    Article  CAS  PubMed  Google Scholar 

  47. Benjamin LE, Keshet E . Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 1997; 94: 8761–8766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fulci G, Dmitrieva N, Gianni D, Fontana EJ, Pan X, Lu Y et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res 2007; 67: 9398–9406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bauer J, Sminia T, Wouterlood FG, Dijkstra CD . Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res 1994; 38: 365–375.

    Article  CAS  PubMed  Google Scholar 

  50. Dijkstra CD, Dopp EA, Joling P, Kraal G . The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 1985; 54: 589–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fulci G, Breymann L, Gianni D, Kurozomi K, Rhee SS, Yu J et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12873–12878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuriyama N, Kuriyama H, Julin CM, Lamborn KR, Israel MA . Protease pretreatment increases the efficacy of adenovirus-mediated gene therapy for the treatment of an experimental glioblastoma model. Cancer Res 2001; 61: 1805–1809.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Norwegian Cancer Society, the Norwegian Research Council, Innovest AS, Helse-Vest (Regional Health Authority of Western Norway), Haukeland University Hospital, the Bergen Translational Research Program, the Centre Recherché de Public Santé Luxembourg, MediGene AG and the European Commission 6th Framework Program Contract 504743. We acknowledge Christine Eriksen, Bodil Hansen, Tove Johansen and Ingrid Gavlen for technical assistance. We thank Dr Anja Gutermann and Dr Ulrich Moebius at MediGene AG (Martinsried, Germany) for outstanding collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P C Huszthy.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huszthy, P., Immervoll, H., Wang, J. et al. Cellular effects of oncolytic viral therapy on the glioblastoma microenvironment. Gene Ther 17, 202–216 (2010). https://doi.org/10.1038/gt.2009.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2009.130

Keywords

This article is cited by

Search

Quick links