Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli

Abstract

Objective:

Food cues yield different patterns of brain activation in obese compared with normal-weight adults in prefrontal and limbic/paralimbic areas. For children, no mapping studies comparing representation sites for food and other stimuli between obese and normal-weight subjects are available.

Design:

We used a cross-sectional design of two age-matched subject groups to investigate differences in brain activation in response to visually presented food, pleasant, and neutral pictures between obese/overweight and normal children.

Subjects:

22 overweight/obese children were compared with 22 normal-weight children.

Measurements:

Functional magnetic resonance imaging (of the whole head during perception of visually presented stimuli), psychological testing, and psychophysical measures of heart rate deceleration were assessed.

Results:

Obese children showed higher activation of the dorsolateral prefrontal cortex (DLPFC) in response to food pictures. In addition, DLPFC activation was negatively correlated with self-esteem. In contrast, normal-weight children showed higher activation of the caudate and hippocampus specific to food pictures, and of the anterior cingulate cortex and thalamus to visual cues in general. In response to food stimuli, obese children showed a heart rate deceleration correlating positively with activation of the ventrolateral prefrontal cortex.

Conclusion:

Obese children react to food stimuli with increased prefrontal activation, which might be associated with increased inhibitory control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Holden C . Behavioral’ addictions: do they exist? Science 2001; 294: 980–982.

    Article  CAS  Google Scholar 

  2. Wang GJ, Volkow ND, Thanos PK, Fowler JS . Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J Addict Dis 2004; 23: 39–53.

    Article  Google Scholar 

  3. Saper CB, Chou TC, Elmquist JK . The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36: 199–211.

    Article  CAS  Google Scholar 

  4. Figlewicz DP, Woods SC . Adiposity signals and brain reward mechanisms. Trends Pharmacol Sci 2000; 21: 235–236.

    Article  CAS  Google Scholar 

  5. Kishi T, Elmquist JK . Body weight is regulated by the brain: a link between feeding and emotion. Mol Psychiatry 2005; 10: 132–146.

    Article  CAS  Google Scholar 

  6. Martel P, Fantino M . Mesolimbic dopaminergic system activity as a function of food reward: a microdialysis study. Pharmacol Biochem Behav 1996; 53: 221–226.

    Article  CAS  Google Scholar 

  7. Kelley AE . Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 2004; 27: 765–776.

    Article  Google Scholar 

  8. Kelley AE, Baldo BA, Pratt WE, Will MJ . Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 2005; 86: 773–795.

    Article  CAS  Google Scholar 

  9. Blum K, Sheridan PJ, Wood RC, Braverman ER, Chen TJ, Cull JG et al. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J R Soc Med 1996; 89: 396–400.

    Article  CAS  Google Scholar 

  10. Noble EP, Noble RE, Ritchie T, Syndulko K, Bohlman MC, Noble LA et al. D2 dopamine receptor gene and obesity. Int J Eat Disord 1994; 15: 205–217.

    Article  CAS  Google Scholar 

  11. Epstein LH, Temple JL, Neaderhiser BJ, Salis RJ, Erbe RW, Leddy JJ . Food reinforcement, the dopamine D2 receptor genotype, and energy intake in obese and nonobese humans. Behav Neurosci 2007; 121: 877–886.

    Article  CAS  Google Scholar 

  12. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  Google Scholar 

  13. Godefroy O, Cabaret M, Petit-Chenal V, Pruvo JP, Rousseaux M . Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex 1999; 35: 1–20.

    Article  CAS  Google Scholar 

  14. Knoch D, Fehr E . Resisting the power of temptations: the right prefrontal cortex and self-control. Ann NY Acad Sci 2007; 1104: 123–134.

    Article  Google Scholar 

  15. Badre D . Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn Sci 2008; 12: 193–200.

    Article  Google Scholar 

  16. Ochsner KN, Gross JJ . The cognitive control of emotion. Trends Cogn Sci 2005; 9: 242–249.

    Article  Google Scholar 

  17. Rorie AE, Newsome WT . A general mechanism for decision-making in the human brain? Trends Cogn Sci 2005; 9: 41–43.

    Article  Google Scholar 

  18. Alexander GE, DeLong MR, Strick PL . Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986; 9: 357–381.

    Article  CAS  Google Scholar 

  19. Miller BT, D′Esposito M . Searching for ‘the top’ in top-down control. Neuron 2005; 48: 535–538.

    Article  CAS  Google Scholar 

  20. Reiman EM . The application of positron emission tomography to the study of normal and pathologic emotions. J Clin Psychiatry 1997; 58 Suppl 16: 4–12.

    PubMed  Google Scholar 

  21. Bonelli RM, Cummings JL . Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 2007; 9: 141–151.

    PubMed  PubMed Central  Google Scholar 

  22. Goldman-Rakic PS . Circuitry of the frontal association cortex and its relevance to dementia. Arch Gerontol Geriatr 1987; 6: 299–309.

    Article  CAS  Google Scholar 

  23. Miller EK, Cohen JD . An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001; 24: 167–202.

    Article  CAS  Google Scholar 

  24. Del Parigi A, Gautier JF, Chen K, Salbe AD, Ravussin E, Reiman E et al. Neuroimaging and obesity: mapping the brain responses to hunger and satiation in humans using positron emission tomography. Ann N Y Acad Sci 2002; 967: 389–397.

    Article  Google Scholar 

  25. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA 1999; 96: 4569–4574.

    Article  CAS  Google Scholar 

  26. Uher R, Treasure J, Heining M, Brammer MJ, Campbell IC . Cerebral processing of food-related stimuli: effects of fasting and gender. Behav Brain Res 2006; 169: 111–119.

    Article  CAS  Google Scholar 

  27. LaBar KS, Gitelman DR, Parrish TB, Kim YH, Nobre AC, Mesulam MM . Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behav Neurosci 2001; 115: 493–500.

    Article  CAS  Google Scholar 

  28. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M et al. Differential brain responses to satiation in obese and lean men. Diabetes 2000; 49: 838–846.

    Article  CAS  Google Scholar 

  29. Gautier JF, Del Parigi A, Chen K, Salbe AD, Bandy D, Pratley RE et al. Effect of satiation on brain activity in obese and lean women. Obes Res 2001; 9: 676–684.

    Article  CAS  Google Scholar 

  30. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM et al. Persistence of abnormal neural responses to a meal in postobese individuals. Int J Obes Relat Metab Disord 2004; 28: 370–377.

    Article  CAS  Google Scholar 

  31. Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 1999; 48: 1801–1806.

    Article  CAS  Google Scholar 

  32. Stoeckel LE, Weller RE, Cook Iii EW, Twieg DB, Knowlton RC, Cox JE . Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage 2008; 41: 636–647.

    Article  Google Scholar 

  33. Holsen LM, Zarcone JR, Thompson TI, Brooks WM, Anderson MF, Ahluwalia JS et al. Neural mechanisms underlying food motivation in children and adolescents. NeuroImage 2005; 27: 669–676.

    Article  Google Scholar 

  34. Killgore WD, Yurgelun-Todd DA . Developmental changes in the functional brain responses of adolescents to images of high and low-calorie foods. Dev Psychobiol 2005; 47: 377–397.

    Article  Google Scholar 

  35. Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC, Hesse V et al. Perzentile für den body-mass-index für das kindes- und jugendalter unter heranziehung verschiedener deutscher stichproben. Monatsschr Kinderheilkd 2001; 149: 807–818.

    Article  Google Scholar 

  36. Lang PJ, Bradley MM, Cuthbert BN . International affective picture system (IAPS): affective ratings of pictures and instruction manual. Technical Report A-6: University of Florida: Gainesville, FL, 2005.

  37. Bradley MM, Lang PJ . Measuring emotion: the self-assessment manikin and the semantic differential. J Behav Ther Exp Psychiatry 1994; 25: 49–59.

    Article  CAS  Google Scholar 

  38. Wünsche P, Schneewind KA . Entwicklung eines fragebogens zur erfassung von selbst- und kompetenzeinschätzungen bei kindern (FSK-K). Diagnostica 1989; 35: 217–235.

    Google Scholar 

  39. Shimizu H . Reliable and precise identification of R-waves in the EKG with a simple peak detector. Psychophysiology 1978; 15: 499–501.

    Article  CAS  Google Scholar 

  40. Genovese CR, Lazar NA, Nichols T . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 2002; 15: 870–878.

    Article  Google Scholar 

  41. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002; 15: 273–289.

    Article  CAS  Google Scholar 

  42. Hodes RL, Cook 3rd EW, Lang PJ . Individual differences in autonomic response: conditioned association or conditioned fear? Psychophysiology 1985; 22: 545–560.

    Article  CAS  Google Scholar 

  43. Narayanan NS, Laubach M . Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 2006; 52: 921–931.

    Article  CAS  Google Scholar 

  44. Tanji J, Hoshi E . Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev 2008; 88: 37–57.

    Article  Google Scholar 

  45. Masterman DL, Cummings JL . Frontal-subcortical circuits: the anatomic basis of executive, social and motivated behaviors. J Psychopharmacol 1997; 11: 107–114.

    Article  CAS  Google Scholar 

  46. Cummings JL . Frontal-subcortical circuits and human behavior. Arch Neurol 1993; 50: 873–880.

    Article  CAS  Google Scholar 

  47. Petrides M . Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philos Trans R Soc Lond B Biol Sci 1996; 351: 1455–1461 discussion 1461–1452.

    Article  CAS  Google Scholar 

  48. Petrides M . Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond B Biol Sci 2005; 360: 781–795.

    Article  Google Scholar 

  49. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J . Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 2006; 51: 871–882.

    Article  CAS  Google Scholar 

  50. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M . Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 2001; 124: 1720–1733.

    Article  CAS  Google Scholar 

  51. Wood JN, Grafman J . Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 2003; 4: 139–147.

    Article  CAS  Google Scholar 

  52. Hikosaka O . Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci 2007; 1104: 229–249.

    Article  CAS  Google Scholar 

  53. Hollerman JR, Tremblay L, Schultz W . Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Prog Brain Res 2000; 126: 193–215.

    Article  CAS  Google Scholar 

  54. Villablanca JR, Marcus RJ . The basal ganglia. A brief review and interpretation. Acta Neurol Latinoam 1975; 21: 157–183.

    CAS  PubMed  Google Scholar 

  55. Flaherty CF, Coppotelli C, Hsu D, Otto T . Excitotoxic lesions of the hippocampus disrupt runway but not consummatory contrast. Behav Brain Res 1998; 93: 1–9.

    Article  CAS  Google Scholar 

  56. Jarrard LE . The hippocampus and motivation. Psychol Bull 1973; 79: 1–12.

    Article  CAS  Google Scholar 

  57. Davidson TL, Jarrard LE . A role for hippocampus in the utilization of hunger signals. Behav Neural Biol 1993; 59: 167–171.

    Article  CAS  Google Scholar 

  58. Tataranni PA, DelParigi A . Functional neuroimaging: a new generation of human brain studies in obesity research. Obes Rev 2003; 4: 229–238.

    Article  CAS  Google Scholar 

  59. Downar J, Crawley AP, Mikulis DJ, Davis KD . The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. NeuroImage 2001; 14: 1256–1267.

    Article  CAS  Google Scholar 

  60. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI . The activation of attentional networks. NeuroImage 2005; 26: 471–479.

    Article  Google Scholar 

  61. Anders S, Lotze M, Erb M, Grodd W, Birbaumer N . Brain activity underlying emotional valence and arousal: a response-related fMRI study. Hum Brain Mapp 2004; 23: 200–209.

    Article  Google Scholar 

  62. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwartz GE . Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J Cogn Neurosci 1998; 10: 525–535.

    Article  CAS  Google Scholar 

  63. Devinsky O, Morrell MJ, Vogt BA . Contributions of anterior cingulate cortex to behaviour. Brain 1995; 118 ( Pt 1): 279–306.

    Article  Google Scholar 

  64. Graham FK, Clifton RK . Heart-rate change as a component of the orienting response. Psychol Bull 1966; 65: 305–320.

    Article  CAS  Google Scholar 

  65. Hamm AO, Schupp HT, Weike AI . Emotion und aktivation: motivationale organisation von emotionen. In: Elbert T, Birbaumer N (eds). Sonderdruck aus Enzyklopädie der Psychologie, Themenbereich C, Serie I, Band 6 Biologische Grundlagen der Psychologie. Hogrefe Verlag für Psychologie: Göttingen, Bern, Toronto, Seattle, 2002. pp 633–682.

    Google Scholar 

  66. Rolls ET . The rules of formation of the olfactory representations found in the orbitofrontal cortex olfactory areas in primates. Chem Senses 2001; 26: 595–604.

    Article  CAS  Google Scholar 

  67. Porubska K, Veit R, Preissl H, Fritsche A, Birbaumer N . Subjective feeling of appetite modulates brain activity: an fMRI study. NeuroImage 2006; 32: 1273–1280.

    Article  Google Scholar 

  68. Kringelbach ML, Rolls ET . The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 2004; 72: 341–372.

    Article  Google Scholar 

  69. Rolls ET . The orbitofrontal cortex and reward. Cereb Cortex 2000; 10: 284–294.

    Article  CAS  Google Scholar 

  70. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M et al. Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage 2004; 21: 1790–1797.

    Article  Google Scholar 

  71. Morris JS, Dolan RJ . Involvement of human amygdala and orbitofrontal cortex in hunger-enhanced memory for food stimuli. J Neurosci 2001; 21: 5304–5310.

    Article  CAS  Google Scholar 

  72. Killgore WD, Yurgelun-Todd DA . Body mass predicts orbitofrontal activity during visual presentations of high-calorie foods. Neuroreport 2005; 16: 859–863.

    Article  Google Scholar 

  73. Lotze M, Heymans U, Birbaumer N, Veit R, Erb M, Flor H et al. Differential cerebral activation during observation of expressive gestures and motor acts. Neuropsychologia 2006; 44: 1787–1795.

    Article  CAS  Google Scholar 

  74. Wildgruber D, Hertrich I, Riecker A, Erb M, Anders S, Grodd W et al. Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation. Cereb Cortex 2004; 14: 1384–1389.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S Beermann for help during data acquisition and C Schröder for help with recruitment of patients. This study has been supported by the Bundesministerium fuer Bildung und Forschung (BMBF, NBL3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Lotze.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website (http://www.nature.com/ijo)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davids, S., Lauffer, H., Thoms, K. et al. Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. Int J Obes 34, 94–104 (2010). https://doi.org/10.1038/ijo.2009.193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.193

Keywords

This article is cited by

Search

Quick links