Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Behavior and Psychology

Central adiposity and the functional magnetic resonance imaging response to cognitive challenge

Abstract

Background:

Excessive adipose tissue, particularly with a centralized distribution, propagates hormonal and metabolic disturbance. The detrimental effects of adiposity may extend beyond the periphery and target the central nervous system, increasing vulnerability to cognitive decline. The aim of the current study was to determine how central adiposity impacts the brain at midlife by examining the blood oxygen level-dependent (BOLD) response to a challenging cognitive task.

Methods:

Seventy-three adults, aged 40–60 years, completed a 2-back verbal working memory task during functional magnetic resonance imaging. Central adiposity was assessed with waist circumference. The association between waist circumference and task-related activation in a priori regions of interest was modeled using bootstrapping regression models corrected for multiple-comparisons.

Results:

Larger waist circumference was associated with diminished working-memory-related BOLD response in the right superior frontal gyrus (β=−0.008, P=0.001, 95% CI: −0.012 to −0.004) and left middle frontal gyrus (β=−0.009, P=0.002, 95% CI: −0.015 to −0.003), statistically adjusting for age, sex, systolic blood pressure and total cholesterol. Reduced task-related activation in the right superior frontal gyrus (r=−0.369, P=0.002) and left middle frontal gyrus (r=−0.266, P=0.025) were related to slower reaction time on the task, controlling for age and education.

Conclusions:

Larger waist circumference predicted alterations in the BOLD response that coupled with decrements in task performance. While future studies are necessary, the results suggest that similar to its role in the periphery, central adiposity may be a robust predictor of metabolic and hormonal alterations that impinge upon central nervous system functioning.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization: Geneva, Switzerland, 2000.

  2. Kopelman PG . Obesity as a medical problem. Nature 2000; 404: 635–643.

    Article  CAS  Google Scholar 

  3. Gustafson D, Lissner L, Bengtsson C, Bjorkelund C, Skoog I . A 24-year follow-up of body mass index and cerebral atrophy. Neurology 2004; 63: 1876–1881.

    Article  CAS  Google Scholar 

  4. Walther K, Birdsill AC, Glisky EL, Ryan L . Structural brain differences and cognitive functioning related to body mass index in older females. Hum Brain Mapp 2009; 31: 1052–1064.

    Article  Google Scholar 

  5. Ward M, Carlsson C, Trivedi M, Sager M, Johnson S . The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study. BMC Neurol 2005; 5: 23.

    Article  Google Scholar 

  6. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K . Central obesity and increased risk of dementia more than three decades later. Neurology 2008; 71: 1057–1064.

    Article  CAS  Google Scholar 

  7. Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I . An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Inter Med 2003; 163: 1524–1528.

    Article  Google Scholar 

  8. Gustafson DR . Adiposity hormones and dementia. J Neurol Sci 2010; 299: 30–34.

    Article  CAS  Google Scholar 

  9. Cereda E, Sansone V, Meola G, Malavazos AE . Increased visceral adipose tissue rather than BMI as a risk factor for dementia. Age Ageing 2007; 36: 488–491.

    Article  Google Scholar 

  10. Ibrahim MM . Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010; 11: 11–18.

    Article  Google Scholar 

  11. Wisse BE . The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol 2004; 15: 2792–2800.

    Article  CAS  Google Scholar 

  12. Wolf PA, Beiser A, Elias MF, Au R, Vasan RS, Seshadri S . Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr Alzheimer Res 2007; 4: 111–116.

    Article  CAS  Google Scholar 

  13. Gustafson D . A life course of adiposity and dementia. Eur J Pharmacol 2008; 585: 163–175.

    Article  CAS  Google Scholar 

  14. Bondi MW, Houston WS, Eyler LT, Brown GG . fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 2005; 64: 501–508.

    Article  Google Scholar 

  15. Braskie MN, Small GW, Bookheimer SY . Vascular health risks and fMRI activation during a memory task in older adults. Neurobiol Aging 2010; 31: 1532–1542.

    Article  Google Scholar 

  16. Gonzales M, Tarumi T, Miles S, Tanaka H, Shah F, Haley A . Insulin Sensitivity as a mediator of the relationship between body mass index and working memory-related brain activation. Obesity 2010; 18: 2131–2137.

    Article  Google Scholar 

  17. Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity 2008; 17: 60–65.

    Article  Google Scholar 

  18. Haley AP, Sweet LH, Gunstad J, Forman DE, Poppas A, Paul RH et al. Verbal working memory and atherosclerosis in patients with cardiovascular disease: an fMRI study. J Neuroimaging 2007; 17: 227–233.

    Article  Google Scholar 

  19. Owen AM, McMillan KM, Laird AR, Bullmore E . N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005; 25: 46–59.

    Article  Google Scholar 

  20. Braver TS, Cohen JD, Nystrom LE, Jonides J, Smith EE, Noll DC . A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997; 5: 49–62.

    Article  CAS  Google Scholar 

  21. Pouliot M-C, Després J-P, Lemieux S, Moorjani S, Bouchard C, Tremblay A et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol 1994; 73: 460–468.

    Article  CAS  Google Scholar 

  22. World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consulation. World Health Organization: Geneva, Switzerland, 2008.

  23. Folstein MF, Folstein SE, McHugh PR . Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–198.

    Article  CAS  Google Scholar 

  24. Wechsler D . WASI II: Wechsler Abbreviated Scale of Intelligence. 2nd edn. Psychological Corporation: San Antonio, TX, USA, 2011.

    Google Scholar 

  25. Delis DC, Kramer JH, Kaplan E, Ober BA . California Verbal Learning Test. 2nd edn. The Psychological Corporation: San Antonio, TX, USA, 2000.

    Google Scholar 

  26. Reitan RM . Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 1958; 8: 271–276.

    Article  Google Scholar 

  27. Ruff RM, Light RH, Parker SB, Levin HS . Benton Controlled Oral Word Association Test: reliability and updated norms. Arch Clin Neuropsychol 1996; 11: 329–338.

    Article  CAS  Google Scholar 

  28. Wechsler D . Wechsler Adult Intelligence Scale. 4th edn. Psychological Corporation: San Antonio, TX, USA, 2008.

    Google Scholar 

  29. Golden CJ . Stroop Color and Word Test: A Manual for Clinical and Experimental Uses. Skoelting: Chicago, IL, USA, 1978.

    Google Scholar 

  30. Jenkinson M, Bannister P, Brady M, Smith S . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825–841.

    Article  Google Scholar 

  31. Smith SM . Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143–155.

    Article  Google Scholar 

  32. Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B . The concurrent validity of the N-back task as a working memory measure. Memory 2010; 18: 394–412.

    Article  Google Scholar 

  33. Laird AR, Robinson JL, McMillan KM, Tordesillas-Gutiérrez D, Moran ST, Gonzales SM et al. Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: Validation of the Lancaster transform. Neuroimage 2010; 51: 677–683.

    Article  Google Scholar 

  34. Galioto RM, Alosco ML, Spitznagel MB, Stanek KM, Gunstad J . Cognitive reserve preserves cognitive function in obese individuals. Aging Neuropsychol C 2013; 20: 684–699.

    Article  Google Scholar 

  35. Baddeley A . Working memory. Science 1992; 255: 556–559.

    Article  CAS  Google Scholar 

  36. Cabeza R, Anderson ND, Locantore JK, McIntosh AR . Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 2002; 17: 1394–1402.

    Article  Google Scholar 

  37. Rypma B, D’Esposito M . Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci 2000; 3: 509–515.

    Article  CAS  Google Scholar 

  38. Malavazos AE, Corsi MM, Ermetici F, Coman C, Sardanelli F, Rossi A et al. Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity: relationship with abdominal fat deposition. Nutr Metab Cardiovasc Dis 2007; 17: 294–302.

    Article  CAS  Google Scholar 

  39. Banks WA, Kastin AJ, Broadwell RD . Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 1995; 2: 241–248.

    Article  CAS  Google Scholar 

  40. Koutsilieri E, Scheller C, Tribl F, Riederer P . Degeneration of neuronal cells due to oxidative stress—microglial contribution. Parkinsonism Relat Disord 2002; 8: 401–406.

    Article  CAS  Google Scholar 

  41. Weaver JD, Huang M-H, Albert M, Harris T, Rowe JW, Seeman TE . Interleukin-6 and risk of cognitive decline MacArthur Studies of Successful Aging. Neurology 2002; 59: 371–378.

    Article  CAS  Google Scholar 

  42. Jefferson AL, Massaro JM, Wolf PA, Seshadri S, Au R, Vasan RS et al. Inflammatory biomarkers are associated with total brain volume The Framingham Heart Study. Neurology 2007; 68: 1032–1038.

    Article  CAS  Google Scholar 

  43. Satizabal CL, Zhu YC, Mazoyer B, Dufouil C, Tzourio C . Circulating IL-6 and CRP are associated with MRI findings in the elderly The 3C-Dijon Study. Neurology 2012; 78: 720–727.

    Article  CAS  Google Scholar 

  44. Tan ZS, Beiser AS, Vasan RS, Roubenoff R, Dinarello CA, Harris TB et al. Inflammatory markers and the risk of Alzheimer disease The Framingham Study. Neurology 2007; 68: 1902–1908.

    Article  CAS  Google Scholar 

  45. Hull M, Strauss S, Berger M, Volk B, Bauer J . The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer’s disease. Behav Brain Res 1996; 78: 37–41.

    Article  CAS  Google Scholar 

  46. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1: 1155–1161.

    Article  CAS  Google Scholar 

  47. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM . Leptin enters the brain by a saturable system independent of insulin. Peptides 1996; 17: 305–311.

    Article  CAS  Google Scholar 

  48. Oomura Y, Aou S, Fukunaga K . Prandial increase of leptin in the brain activates spatial learning and memory. Pathophysiology 2010; 17: 119–127.

    Article  CAS  Google Scholar 

  49. Banerji MA, Buckley MC, Chaiken RL, Gordon D, Lebovitz HE, Kral JG . Liver fat, serum triglycerides and visceral adipose tissue in insulin-sensitive and insulin-resistant black men with NIDDM. Int J Obes Relat Metab Disord 1995; 19: 846–850.

    CAS  PubMed  Google Scholar 

  50. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 2004; 53: 1253–1260.

    Article  CAS  Google Scholar 

  51. Holden KF, Lindquist K, Tylavsky FA, Rosano C, Harris TB, Yaffe K . Serum leptin level and cognition in the elderly: Findings from the Health ABC Study. Neurobiol Aging 2009; 30: 1483–1489.

    Article  CAS  Google Scholar 

  52. Pannacciulli N, Le DSN, Chen K, Reiman EM, Krakoff J . Relationships between plasma leptin concentrations and human brain structure: a voxel-based morphometric study. Neurosci Lett 2007; 412: 248–253.

    Article  CAS  Google Scholar 

  53. Huang X-F, Zavitsanou K, Huang X, Yu Y, Wang H, Chen F et al. Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity. Behav Brain Res 2006; 175: 415–419.

    Article  CAS  Google Scholar 

  54. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  Google Scholar 

  55. Brunetti L, Orlando G, Recinella L, Michelotto B, Ferrante C, Vacca M . Resistin, but not adiponectin, inhibits dopamine and norepinephrine release in the hypothalamus. Eur J Pharmacol 2004; 493: 41–44.

    Article  CAS  Google Scholar 

  56. Brunetti L, Michelotto B, Orlando G, Vacca M . Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings. Eur J Pharmacol 1999; 372: 237–240.

    Article  CAS  Google Scholar 

  57. Vernaleken I, Buchholz H-G, Kumakura Y, Siessmeier T, Stoeter P, Bartenstein P et al. ‘Prefrontal’ cognitive performance of healthy subjects positively correlates with cerebral FDOPA influx: An exploratory [18F]-fluoro-L-DOPA-PET investigation. Hum Brain Mapp 2007; 28: 931–939.

    Article  Google Scholar 

  58. Mozley LH, Gur RC, Mozley PD, Gur RE . Striatal dopamine transporters and cognitive functioning in healthy men and women. Am J Psychiatry 2001; 158: 1492–1499.

    Article  CAS  Google Scholar 

  59. Seamans JK, Yang CR . The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004; 74: 1–58.

    Article  CAS  Google Scholar 

  60. Bäckman L, Karlsson S, Fischer H, Karlsson P, Brehmer Y, Rieckmann A et al. Dopamine D(1) receptors and age differences in brain activation during working memory. Neurobiol Aging 2011; 32: 1849–1856.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by grants from the National Institute of Neurological Disorders and Stroke (R01NS75565, APH) and the National Institute on Aging (F31AG040890, MMG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Haley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzales, M., Kaur, S., Eagan, D. et al. Central adiposity and the functional magnetic resonance imaging response to cognitive challenge. Int J Obes 38, 1193–1199 (2014). https://doi.org/10.1038/ijo.2014.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.5

Keywords

This article is cited by

Search

Quick links