Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eya protein phosphatase activity regulates Six1–Dach–Eya transcriptional effects in mammalian organogenesis

A Corrigendum to this article was published on 15 January 2004

Abstract

The precise mechanistic relationship between gene activation and repression events is a central question in mammalian organogenesis, as exemplified by the evolutionarily conserved sine oculis (Six), eyes absent (Eya) and dachshund (Dach) network of genetically interacting proteins. Here, we report that Six1 is required for the development of murine kidney, muscle and inner ear, and that it exhibits synergistic genetic interactions with Eya factors. We demonstrate that the Eya family has a protein phosphatase function, and that its enzymatic activity is required for regulating genes encoding growth control and signalling molecules, modulating precursor cell proliferation. The phosphatase function of Eya switches the function of Six1–Dach from repression to activation, causing transcriptional activation through recruitment of co-activators. The gene-specific recruitment of a co-activator with intrinsic phosphatase activity provides a molecular mechanism for activation of specific gene targets, including those regulating precursor cell proliferation and survival in mammalian organogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Six1 is required for the development of multiple organs.
Figure 2: Molecular analyses of the developmental muscle and kidney defects.
Figure 3: Decreased cell proliferation, increased cell death and diminished c-Myc gene expression.
Figure 4: Eya has intrinsic phosphatase activity and this is required for Six1-mediated gene activation and cell proliferation.
Figure 5: Eya3 phosphatase activity is required to recruit CBP and relieve Dach-mediated repression.
Figure 6: Genetic interaction between Six1 and Eya1 in regulating muscle, pituitary and kidney development.

Similar content being viewed by others

References

  1. Cheyette, B. N. et al. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12, 977–996 (1994)

    Article  CAS  Google Scholar 

  2. Bonini, N. M., Leiserson, W. M. & Benzer, S. The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72, 379–395 (1993)

    Article  CAS  Google Scholar 

  3. Mardon, G., Solomon, N. M. & Rubin, G. M. dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120, 3473–3486 (1994)

    CAS  PubMed  Google Scholar 

  4. Bonini, N. M., Bui, Q. T., Gray-Board, G. L. & Warrick, J. M. The Drosophila eyes absent gene directs ectopic eye formation in a pathway conserved between flies and vertebrates. Development 124, 4819–4826 (1997)

    CAS  PubMed  Google Scholar 

  5. Shen, W. & Mardon, G. Ectopic eye development in Drosophila induced by directed dachshund expression. Development 124, 45–52 (1997)

    CAS  PubMed  Google Scholar 

  6. Oliver, G. et al. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–4055 (1995)

    CAS  PubMed  Google Scholar 

  7. Xu, P. X., Woo, I., Her, H., Beier, D. R. & Maas, R. L. Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124, 219–231 (1997)

    CAS  PubMed  Google Scholar 

  8. Hammond, K. L., Hanson, I. M., Brown, A. G., Lettice, L. A. & Hill, R. E. Mammalian and Drosophila dachshund genes are related to the Ski proto-oncogene and are expressed in eye and limb. Mech. Dev. 74, 121–131 (1998)

    Article  CAS  Google Scholar 

  9. Heanue, T. A. et al. Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev. 13, 3231–3243 (1999)

    Article  CAS  Google Scholar 

  10. Chen, R., Amoui, M., Zhang, Z. & Mardon, G. Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 91, 893–903 (1997)

    Article  CAS  Google Scholar 

  11. Pignoni, F. et al. The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 91, 881–891 (1997)

    Article  CAS  Google Scholar 

  12. Ohto, H. et al. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol. Cell. Biol. 19, 6815–6824 (1999)

    Article  CAS  Google Scholar 

  13. Davis, R. J., Shen, W., Heanue, T. A. & Mardon, G. Mouse Dach, a homologue of Drosophila dachshund, is expressed in the developing retina, brain and limbs. Dev. Genes Evol. 209, 526–536 (1999)

    Article  CAS  Google Scholar 

  14. Li, X., Perissi, V., Liu, F., Rose, D. W. & Rosenfeld, M. G. Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 297, 1180–1183 (2002)

    ADS  CAS  PubMed  Google Scholar 

  15. Zhu, C. C. et al. Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development 129, 2835–2849 (2002)

    CAS  Google Scholar 

  16. Lagutin, O. V. et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379 (2003)

    Article  CAS  Google Scholar 

  17. Pohl, M., Stuart, R. O., Sakurai, H. & Nigam, S. K. Branching morphogenesis during kidney development. Annu. Rev. Physiol. 62, 595–620 (2000)

    Article  CAS  Google Scholar 

  18. Laclef, C. et al. Altered myogenesis in Six1-deficient mice. Development 130, 2239–2252 (2003)

    Article  CAS  Google Scholar 

  19. Daston, G., Lamar, E., Olivier, M. & Goulding, M. Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122, 1017–1027 (1996)

    CAS  PubMed  Google Scholar 

  20. Schafer, K. & Braun, T. Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Nature Genet. 23, 213–216 (1999)

    Article  CAS  Google Scholar 

  21. Gross, M. K. et al. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Development 127, 413–424 (2000)

    CAS  Google Scholar 

  22. Brohmann, H., Jagla, K. & Birchmeier, C. The role of Lbx1 in migration of muscle precursor cells. Development 127, 437–445 (2000)

    CAS  Google Scholar 

  23. Dietrich, S. et al. The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126, 1621–1629 (1999)

    CAS  PubMed  Google Scholar 

  24. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Xu, P. X. et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature Genet. 23, 113–117 (1999)

    Article  CAS  Google Scholar 

  26. Torres, M., Gomez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995)

    CAS  PubMed  Google Scholar 

  27. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993)

    Article  CAS  Google Scholar 

  29. Kispert, A., Vainio, S. & McMahon, A. P. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125, 4225–4234 (1998)

    CAS  PubMed  Google Scholar 

  30. Davies, J. A. & Bard, J. B. The development of the kidney. Curr. Top. Dev. Biol. 39, 245–301 (1998)

    Article  CAS  Google Scholar 

  31. Stanton, B. R., Perkins, A. S., Tessarollo, L., Sassoon, D. A. & Parada, L. F. Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev. 6, 2235–2247 (1992)

    Article  CAS  Google Scholar 

  32. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R. & Bradley, A. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev. 7, 671–682 (1993)

    Article  CAS  Google Scholar 

  33. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000)

    Article  CAS  Google Scholar 

  34. Kioussi, C. et al. Identification of a Wnt/Dvl/β-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111, 673–685 (2002)

    Article  CAS  Google Scholar 

  35. Baek, S. H. et al. Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein. Cell 110, 55–67 (2002)

    Article  CAS  Google Scholar 

  36. Collet, J. F., Stroobant, V., Pirard, M., Delpierre, G. & Van Schaftingen, E. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J. Biol. Chem. 273, 14107–14112 (1998)

    Article  CAS  Google Scholar 

  37. Collet, J. F., Stroobant, V. & Van Schaftingen, E. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J. Biol. Chem. 274, 33985–33990 (1999)

    Article  CAS  Google Scholar 

  38. Kobor, M. S. et al. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol. Cell 4, 55–62 (1999)

    Article  CAS  Google Scholar 

  39. Yeo, M., Lin, P. S., Dahmus, M. E. & Gill, G. N. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078–26085 (2003)

    Article  CAS  Google Scholar 

  40. Hausmann, S. & Shuman, S. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J. Biol. Chem. 277, 21213–21220 (2002)

    Article  CAS  Google Scholar 

  41. Wang, W. et al. Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic “snapshots” of intermediate states. J. Mol. Biol. 319, 421–431 (2002)

    Article  CAS  Google Scholar 

  42. Ikeda, K., Watanabe, Y., Ohto, H. & Kawakami, K. Molecular interaction and synergistic activation of a promoter by Six, Eya, and Dach proteins mediated through CREB binding protein. Mol. Cell. Biol. 22, 6759–6766 (2002)

    Article  CAS  Google Scholar 

  43. Hasty, P. et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364, 501–506 (1993)

    Article  ADS  CAS  Google Scholar 

  44. Nabeshima, Y. et al. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364, 532–535 (1993)

    Article  ADS  CAS  Google Scholar 

  45. Rudnicki, M. A. et al. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75, 1351–1359 (1993)

    Article  CAS  Google Scholar 

  46. Tajbakhsh, S., Rocancourt, D., Cossu, G. & Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89, 127–138 (1997)

    Article  CAS  Google Scholar 

  47. McKinsey, T. A., Zhang, C. L. & Olson, E. N. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497–504 (2001)

    Article  CAS  Google Scholar 

  48. McKenna, N. J. & O'Malley, B. W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–474 (2002)

    Article  CAS  Google Scholar 

  49. Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000)

    CAS  Google Scholar 

  50. Denu, J. M., Stuckey, J. A., Saper, M. A. & Dixon, J. E. Form and function in protein dephosphorylation. Cell 87, 361–364 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. N. Gill, J. E. Dixon, M. Yeo, L. Erkman, V. Perissi, L. Olson, F. Liu and V. Kumar for reagents, critical advice and suggestions; P. Myer and M. Fisher for figure and manuscript preparation; C. Nelson for tissue culture; P. Kotol for technical assistance; and H. Taylor for animal care. We are grateful to those who provided us with essential reagents for this study. This work was supported by grants from the NIH to X.L., M.G.R., D.W.R., R.M., A.K.A. and S.K.N. M.G.R. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Li or Michael G. Rosenfeld.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Ohgi, K., Zhang, J. et al. Eya protein phosphatase activity regulates Six1–Dach–Eya transcriptional effects in mammalian organogenesis. Nature 426, 247–254 (2003). https://doi.org/10.1038/nature02083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02083

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing