Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p

Abstract

Dentatorubral and pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder characterized by combined systemic degeneration of the dentatofugal and pallidofugal pathways. We investigated a candidate gene and found that DRPLA patients had an expanded CAG trinucleotide repeat in a gene on the short arm of chromosome 12. The repeat size varied from 7–23 in normal individuals. In patients one allele was expanded to between 49–75 repeats or occasionally even more. Expansion was usually associated with paternal transmission and only occasionally with maternal transmission. Repeat size showed a close correlation with age of onset of symptoms and disease severity. We conclude that DRPLA is the seventh genetic disorder known to be associated with expansion of an unstable trinucleotide repeat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, J.K., Gonda, V.E. & Malamud, N. Unusual form of cerebellar ataxia: Combined dentato-rubral and pallido-Luysian degeneration. Neurology 8, 205–209 (1958).

    Article  CAS  PubMed  Google Scholar 

  2. Neumann, M.N. Combined degeneration of globus pallidus and dentate nucleus and their projections. Neurology 9, 430–438 (1959).

    Article  CAS  PubMed  Google Scholar 

  3. Naito, H. & Oyanagi, S. Familial myoclonus epilepsy and choreoathetosis: Hereditary dentatorubral-pallidoluysian atrophy. Neurology 32, 798–807 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, H. et al. Hereditary dentatorubral-pallidoluysian atrophy: Clinical and pathologic variants in a family. Neurology 38, 1065–1070 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Kondo, I. et al. Exclusion mapping of the hereditary dentatorubropallidoluysian atrophy gene from the Huntington's disease locus. J. med. Genet. 27, 105–108 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takiguchi, Y. et al. A clinical analysis of 11 cases in a family of dentatorubropallidoluysian atrophy (DRPLA). (in Japanese) Dokkyo Medical J. 7, 283–289 (1992).

    Google Scholar 

  7. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. La Spada, A.R. et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genet 2, 301–304 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Oberlé, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).

    Article  PubMed  Google Scholar 

  10. Yu, S. et al. Fragile X genotype characterized by an unstable region of DNA. Science 252, 1179–1181 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Harley, H.G. et al. Expansion of an unstabie DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Aslanidis, C. et al. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature 355, 548–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Brook, J.D. et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Mahadevan, M. et al. Myotonic dystrophy mutation: An unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Fu, Y.-H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  19. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type I. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Knight, S.J.L. et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 74, 127–134 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Riggins, G.J. et al. Human genes containing polymorphic trinucleotide repeats. Nature Genet. 2, 186–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Li, S.-H., Mclnnis, M.G., Margolis, R.L., Antonarakis, S.E. & Ross, C.A. Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics 16, 572–579 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet 4, 387–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Snell, R.G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature Genet. 4, 393–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Andrew, S.E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet. 4, 398–403 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Kurosawa, H., Yamada, M. & Nakagome, Y. Restriction fragment length polymorphisms of the human N-myc gene: relationship to gene amplification. Oncogene 2, 85–90 (1987).

    CAS  PubMed  Google Scholar 

  27. Tadokoro, K., Fujii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apal polymorphism at the insulin like growth factor II gene (IGF2). Nucl. Acids Res. 19, 6967 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  29. Tadokoro, K. et al. Intragenic homozygous deletion of the WTI gene in Wilms' tumor. Oncogene 7, 1215–1221 (1992).

    CAS  PubMed  Google Scholar 

  30. Adams, M.D. et al. Sequence identified of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Phillips, S.C. & Turner, P.C. A transcriptional analysis of the gene encoding mouse U7 small nuclear RNA. Gene 116, 181–186 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagafuchi, S., Yanagisawa, H., Sato, K. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6, 14–18 (1994). https://doi.org/10.1038/ng0194-14

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0194-14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing