Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome

Abstract

Apert syndrome is a distinctive human malformation comprising craniosynostosis and severe syndactyly of the hands and feet. We have identified specific missense substitutions involving adjacent amino acids (Ser252Trp and Pro253Arg) in the linker between the second and third extracellular immunoglobulin (Ig) domains of fibroblast growth factor receptor 2 (FGFR2) in all 40 unrelated cases of Apert syndrome studied. Crouzon syndrome, characterized by craniosynostosis but normal limbs, was previously shown to result from allelic mutations of the third Ig domain of FGFR2. The contrasting effects of these mutations provide a genetic resource for dissecting the complex effects of signal transduction through FGFRs in cranial and limb morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Apert, M.E.,De I'acrocephaiosyndactylie. Bull. Soc. Med. Hôp. Paris 23, 1310–1313 (1906).

    Google Scholar 

  2. Cohen, M.M. Jr., et al. Birth prevalence study of the Apert syndrome. Am. J. med. Genet. 42, 655–659 (1992).

    Article  PubMed  Google Scholar 

  3. Blank, C.E. Apert's syndrome (a type of acrocephalosyndactyly)-observations on a British series of thirty-nine cases. Ann. hum. Genet. 24, 151–164 (1960).

    Article  CAS  PubMed  Google Scholar 

  4. Cohen, M.M. Jr, & Kreiborg, S. The central nervous system in the Apert syndrome. Am. J. med. Genet. 36, 36–45 (1990).

    Article  Google Scholar 

  5. Upton, J. & Zuker, R.M. eds. Apert syndrome. Clin. Plast. Surg. 18, 1–435 (W.B. Saunders, Philadelphia, 1991).

    Google Scholar 

  6. Cohen, M.M. Jr., Kreiborg, S. Visceral anomalies in the Apert syndrome. Am. J. med. Genet. 45, 758–760 (1993).

    Article  PubMed  Google Scholar 

  7. Cohen, M.M Jr. & Kreiborg, S. Skeletal abnormalities in the Apert syndrome. Am. J. med. Genet. 47, 624–632 (1993).

    Article  PubMed  Google Scholar 

  8. Patton, M.A., Goodship, J., Hayward, R. & Lansdown, R. Intellectual development jn Apert's syndrome: a long term follow up of 29 patients. J. med. Genet. 25, 164–167 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campis, L.B. Children with Apert syndrome: developmental and psychologic considerations. Clin. Plast. Surg. 18, 409–416 (1991).

    CAS  PubMed  Google Scholar 

  10. Lewanda, A.F. et al. Cytogenetic survey of Apert syndrome. Reevaluation of a translocation (2;9)(p11,2;q34.2) in a patient suggests the breakpoints are not related to the disorder. Am. J. Dis. Child. 147, 1306–1308 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Jabs, E.W. et al. A mutation in the homeodomaln of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75, 443–450 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Reardon, W. et al. Mutations In the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Genet. 8, 98–103 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Jabs, E.W. et al. Jackson-Weiss and Crouron syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nature Genet. 8, 275–279 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Muenke, M. et al. Mutations in the fibroblast growth factor receptor-1 gene in Pfeiffer syndrome. Nature Genet. 8, 269–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, R.L., Riddle, R.D. & Tabin, C.J. Mechanisms of limb patterning. Curr. Opin. Genet. Dev. 4, 535–542 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Davidson, D.R., Crawley, A., Hill, R.E. & Tickle, C. Position-dependent expression of two related homeobox genes in developing vertebrate limbs. Nature 352, 429–431 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Robert, B., Lyons, G., Simandl, B.K., Kuroiwa, A. & Buckingham, M. The apical ectodermal ridge regulates Hox-7 and Hox-8 gene expression in developing chick limb buds. Genes Dev. 5, 2363–2374 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, R., Landry, M. & Muneoka, K. Maintenance of ZPA signaling in cultured mouse limb bud cells. Development 117, 1421–1433 (1993).

    CAS  PubMed  Google Scholar 

  19. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G.R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Niswander, L., Jeffrey, S., Martin, G.R. & Tickle, C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Fallon, J.F. et al. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Orr-Urtreger, A., Givol, D., Yayon, A., Yarden, Y. & Lonai, P. Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 113, 1419–1434 (1991).

    CAS  PubMed  Google Scholar 

  23. Peters, K.G., Werner, S., Chen, G. & Williams, L.T. Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114, 233–243 (1992).

    CAS  PubMed  Google Scholar 

  24. Peters, K., Ornitz, D., Werner, S. & Williams, L. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev. Biol. 155, 423–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Francomano, C.A. et al. Localization of the achondroplasia gene to the distal 2.5 Mb of human chromosome 4p. Hum. molec. Genet. 3, 787–792 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Velinov, M. et al. The gene for achondroplasia maps to the telomeric region of chromosome 4p. Nature Genet. 6, 314–317 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Mattei, M.-G., Moreau, A., Gesnel, M.-C., Houssaint, E. & Breathnach, R. Assignment by in situ hybridization of a fibroblast growth factor receptor gene to human chromosome band 10q26. Hum. Genet. 87, 84–86 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Dionne, C.A. et al. BEK, a receptor for multiple members of the fibroblast growth factor (FGF) family, maps to human chromosome 10q25.3→q26. Cytogenet. Cell Genet. 60, 34–36 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Preston, R.A. et al. A gene for Crouzon craniofacial dysostosis maps to the long arm of chromosome 10. Nature Genet. 7, 149–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Li, X. et al. Two craniosynostotic syndrome loci, Crouzon and Jackson-Weiss, map to chromosome 10q23-q26. Genomics 22, 418–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, D.E., Lu, J., Chen, H., Werner, S. & Williams, L.T. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third Immunoglobulin domain. Molec. cell. Biol. 11, 4627–4634 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yayon, A. et al. A confined variable region confers ligand specificity on fibroblast growth factor receptors: implications for the origin of the immunoglobulin fold. EMBO J. 11, 1885–1890 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dionne, C.A. et al. Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J. 9, 2685–2692 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Givol, D. & Yayon, A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 6, 3362–3369 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Miki, T. et al. Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene. Proc. natn. Acad. Sci. U.S.A. 89, 246–250 (1992).

    Article  CAS  Google Scholar 

  38. Houssaint, E. et al. Related fibroblast growth factor receptor genes exist in the human genome. Proc. natn. Acad. Sci. U.S.A. 87, 8180–8184 (1990).

    Article  CAS  Google Scholar 

  39. Erickson, J.D. & Cohen, M.M. Jr., A study of parental age effects on the occurrence of fresh mutations for the Apert syndrome.Ann. num. Genet. 38, 89–96 (1974).

    Article  CAS  Google Scholar 

  40. Upton, J. Apert syndrome. Classification and pathologic anatomy of limb anomalies. Clin. Plast. Surg. 18, 321–355 (1991).

    CAS  PubMed  Google Scholar 

  41. Cooper, D.N. & Krawczak, M. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum. Genet. 85, 55–74 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Ketterling, R.P., Vielhaber, E. & Sommer, S.S. The rates of G:C→T:A and G:C→C:G transversions at CpG dinucleotldes in the human factor IX gene. Am. J. hum. Genet. 54, 831–835 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mason, I.J. The ins and outs of fibroblast growth factors. Cell 78, 547–552 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, D.E. & Williams, L.T. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60, 1–41 (1993).

    CAS  PubMed  Google Scholar 

  45. Orr-Urtreger, A. et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol. 158, 475–486 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Werner, S. et al. Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J. 12, 2635–2643 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hou, J. et al. Substitution of putative half-cystine residues in heparin-bindlng fibroblast growth factor receptors. Loss of binding activity in both two and three loop isoforms. J. biol. Chem. 267, 17804–17808 (1992).

    CAS  PubMed  Google Scholar 

  48. Zimmer, Y., Givol, D. & Yayon, A. Multiple structural elements determine ligand binding of fibroblast growth factor receptors. Evidence that both Ig domain 2 and 3 define receptor specificity. J. biol. Chem. 268, 7899–7903 (1993).

    CAS  PubMed  Google Scholar 

  49. Williams, A.F. & Barclay, A.N. The immunoglobulin superfamily -domains for cell surface recognition. A. Rev. Immunol. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  50. Xu, J. et al. Expression and immunochemical analysis of rat and human fibroblast growth factor receptor (fig) isoforms. J. biol. Chem. 267, 17792–17803 (1992).

    CAS  PubMed  Google Scholar 

  51. Pantoliano, M.W. et al. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 33, 10229–10248 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, E.Y., Davis, S.J., Williams, A.F., Harlos, K. & Stuart, D.I. Crystal structure at 2. 8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232–239 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Avraham, K.B. et al. Mapping of murine fibroblast growth factor receptors refines regions of homology between mouse and human chromosomes. Genomics 21, 656–658 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Grüneberg, H. Genetical studies on the skeleton of the mouse. XVIII. Three genes for syndactylism. J. Genet. 54, 113–145 (1956).

    Article  Google Scholar 

  55. Grüneberg, H. Genetical studies on the skeleton of the mouse. XXV. The development of syndactylism. Genet. Res. 1, 196–213 (1960).

    Article  Google Scholar 

  56. Grüneberg, H. Genetical studies on the skeleton of the mouse. XXVII. The development of Oligosyndactylism. Genet. Res. 2, 33–42 (1961).

    Article  Google Scholar 

  57. Grüneberg, H. Genetical studies on the skeleton of the mouse. XXXII. The development of shaker with syndactylism. Genet. Res. 3, 157–166 (1962).

    Article  Google Scholar 

  58. Jarvik, G.P., Patton, M.A., Homfray, T. & Evans, J.P. Non-Mendelian transmission in a human developmental disorder: split hand/split foot. Am. J. hum. Genet. 55, 710–713 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hofstra, R.M.W. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Carlson, K.M. et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc. natn. Acad. Sci. U.S.A. 91, 1579–1583 (1994).

    Article  CAS  Google Scholar 

  61. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual, 2nd edn. (Cold Spring Harbor Laboratory Press, 1989).

    Google Scholar 

  62. Hazan, J., Dubay, C., Pankowiak, M.-P., Becuwe, N. & Weissenbach, J. A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers. Genomics 12, 183–189 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Padanilam, B.J. et al. Characterization of the human HOX 7 cDNA and Identification of polymorphic markers. Hum. molec. Genet. 1, 407–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Yu, C.-E., Anderson, L., Oshima, J. & Schellenberg, G.D. Dinucleotide repeat polymorphism at the FGFR1 gene. Hum. molec. Genet. 3, 212 (1994).

    Article  PubMed  Google Scholar 

  65. Taylor, S.A.M., Barnes, G.T., MacDonald, M.E. & Gusella, J.F. A dinucleotide repeat polymorphism at the D4S127 locus.Hum. molec. Genet. 1, 142 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. MacDonald, M.E. et al. Clustering of multiallele DNA markers near the Huntington's disease gene. J. clin. Invest. 84, 1013–1016 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Spinardi, L., Mazars, R. & Theillet, C. Protocols for an improved detection of point mutations by SSCP. Nucl. Acids Res. 19, 4009 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Glavac, D. & Dean, M. Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum. Mut. 2, 404–414 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Thein, S.L. & Hinton, J. A simple and rapid method of direct sequencing using Dynabeads.Br. J. Haematol. 79, 113–115 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Rutland, P. et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nature Genet 9, 173–176 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkie, A., Slaney, S., Oldridge, M. et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9, 165–172 (1995). https://doi.org/10.1038/ng0295-165

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0295-165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing