Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia

Abstract

The longitudinal growth of the skeleton arises from the continuous process of endochondral ossification occurring at the ends of growing long bones. Dwarfism results when this process is disrupted, as in the autosomal dominant human skeletal diseases hypochondroplasia (HCH)1, achondroplasia (ACH)2 and thanatophoric dys-plasia (TD)3. Interestingly, these disorders display a graded spectrum of phenotypic severity and are the result of distinct missense mutations in the fibroblast growth factor receptor 3 gene (FGFR3). TD, characterized by neonatal lethality and profound dwarfism, is the result of FGFR3 mutations, including an R248C substitution in the extracellular domain or a K650E substitution in the tyrosine kinase (TK) domain4. ACH, which is non-lethal and presents less severe dwarfism, results almost exclusively from a G380R substitution in the transmembrane domain5, 6. Homozy-gous achondroplasia resembles the phenotype of TD7. In this report the effect of the ACH and TD mutations on the activity and regulation of FGFR3 are analysed. We showed that each of the mutations constitutively activate the receptor, as evidenced by ligand-independent receptor tyro-sine phosphorylation and cell proliferation. Moreover, the mutations that are responsible for TD were more strongly activating than the mutation causing ACH, providing a biochemical explanation for the observation that the phenotype of TD is more severe than that of ACH

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oberklaid, R., Danks, D.M., Jensen, F., Stace, L. & Rosshandler, S. Achondroplasia and hypochondroplasia. Comments on frequencey, mutation rate, and radiological features in skull and spine. J. Med. Genet. 16, 140–146 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Briner, J., Giedion, A. & Spycher, M.A. Variation of quantitative and qualitative changes of enchondral ossification in heterozygous achondroplasia. Pathol. Res. Pract. 187, 271–278 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Shah, K., Astley, R. & Cameron, A.H. Thanatophoric dwarfism. J. Med. Genet. 10, 243–252 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tavormina, P.L. et al.Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Shiang, R. et al. Mutations in the transmembrane domain of FGFRS cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Rimoin, D.L. & Lachman, R.S. Genetic disorders of the osseous skeleton, in McKusick's Heritable Disorders of connective tissue. (ed. Beighton, R) 557–689 (Mosby-Year Book, St. Louis, 1993).

  8. Ornitz, D.M., Yayon, A., Flanagan, J.G., Svahn, C.M., Levi, E. & Leder, P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol. 12, 240–247 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ornitz, D.M. & Leder, P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J. Biol. Chem. 267, 16305–16311 (1992).

    CAS  PubMed  Google Scholar 

  10. Chellaiah, A.T., McEwen, D.G., Werner, S., Xu, J. & Ornitz, D.M. Fibroblast Growth Factor Receptor (FGFR) 3: Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J. Biol. Chem. 269, 11620–11627 (1994).

    CAS  PubMed  Google Scholar 

  11. Keegan, K., Meyer, S. & Hayman, M.J. Structural and biosynthetic characterization of the fibroblast growth factor receptor 3 (FGFR-3) protein. Oncogene 6, 2229–2236 (1991).

    CAS  PubMed  Google Scholar 

  12. Bargmann, C.I., Hung, M.-C. & Weinberg, R.A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Neilson, K.M. & Friesel, R.E. Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem. 270, 26037–26040 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Santoro, M. et al. Activation of RET as a dominant transforming gene by germline mutatins of MEN2A and MEN2B. Science 267, 381–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Sorokin, A., Lemmon, M.A., Ullrich, A. & Schlessinger, J. Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond. J. Biol. Chem. 269, 9752–9759 (1994).

    CAS  PubMed  Google Scholar 

  16. Watowich, S.S., Hilton, D.J. & Lodish, H.F. Activation and inhibition of erythropoietin receptor function: Role of receptor dimerization. Mol. Cell. Biol. 14, 3535–3549 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blechman, J.M. et al. The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. Cell 80, 103–113 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. De Vos, A.M., Ultscyh, M. & Kossiakoff, A.A. Human growth hormone and extracellular domain of its receptor: Crystal structure of the complex. Science 255, 306–312 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Muenke, M. & Schell, U. Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends. Genet. 11, 308–313 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Wilkie, A.O.M., Morriss-Kay, G.M., Jones, E.Y. & Heath, J.K. Functions of fibroblast growth factors and their receptors. Curr. Biol. 5, 500–507 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Mohammadi, M., Dikic, I., Sorokin, A., Burgess, W.H., Jaye, M. & Schlessinger, J. Identification of six novel autophosphorylation sites on fibroblast growth factor receptor 1 and elucidation of their importance in receptor activation and signal transduction. Mol. Cell. Biol. 16, 977–989 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanks, S.K., Quinn, A.M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Formisano, P. et al. Mutation in a conserved motif next to the insulin receptor key autophosphorylation sites de-regulates kinase activity and impairs insulin action. J. Biol. Chem. 268, 5241–5248 (1993).

    CAS  PubMed  Google Scholar 

  24. Hubbard, S.R., Wei, L., Ellis, L. & Hendrickson, W.A. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372, 746–754 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Hanneken, A., Ying, W., Ling, N. & Baird, A. Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc. Natl. Acad. Sci. USA 91, 9170–9174 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rupp, R.A.W., Snider, L. & Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Olwin, B.B. & Hauschka, S.D. Fibroblast growth factor receptor levels decrease during chick embryogenesis. J. Cell Biol. 110, 503–509 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Webster, M.K. & Donoghue, D.J Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 15, 520–527 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nature Genet. 12, 390–397 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naski, M., Wang, Q., Xu, J. et al. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 13, 233–237 (1996). https://doi.org/10.1038/ng0696-233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing