Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation

Abstract

The partial pressure of oxygen (pO2) and pH play critical roles in tumor biology and therapy. We report here the first combined, high-resolution (≤10 μm) measurements of interstitial pH and pO2 profiles between adjacent vessels in a human tumor xenograft, using fluorescence ratio imaging and phosphorescence quenching microscopy. We found (1) heterogeneity in shapes of pH and pO2 profiles; (2) a discordant relation between local pH profiles and corresponding pO2 profiles, yet a strong correlation between mean pH and pO2 profiles; (3) no correlation between perivascular pH/pO2 and nearest vessel blood flow; and (4) well-perfused tumor vessels that were hypoxic and, consequently, large hypoxic areas in the surrounding interstitium. Such multiparameter measurements of the in vivo microenvironment provide unique insights into biological processes in tumors and their response to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  2. Gullino, P.M., Grantham, F.H., Courtney, A.H. & Losonczy, I. Relationship between oxygen and glucose consumption by transplanted tumors in vivo. Cancer Res. 27, 1041–1052 (1967).

    CAS  PubMed  Google Scholar 

  3. Casciari, J.J., Sotirchos, S.V. & Sutherland, R.M. Variations in tumor Cell growth rates and metabolism with oxygen concentration, glucose concentration, and extraCellular pH. J. Cell. Physiol. 151, 386–394 (1992).

    Article  CAS  Google Scholar 

  4. Engin, K. et al. ExtraCellular pH distribution in human tumours. Int. J. Hyperthermia 11, 211–216 (1995).

    Article  CAS  Google Scholar 

  5. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  Google Scholar 

  6. Shimizu, S. et al. Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL. Cancer Res. 56, 2161–2166 (1996).

    CAS  PubMed  Google Scholar 

  7. Graeber, T.G. et al. Hypoxia-mediated selection of Cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  CAS  Google Scholar 

  8. Young, P.R. & Spevacek, S.M. Substratum acidification by murine B16F10 melanoma cultures. Biochim. Biophys. Acta 1139, 163–166 (1992).

    Article  CAS  Google Scholar 

  9. Turner, G.A. Increased release of tumor Cells by collagenase at acid pH: A possible mechanism for metastasis. Experientia 35, 1657–1658 (1979).

    Article  CAS  Google Scholar 

  10. Krtolica, A. & Ludlow, J.W. Hypoxia arrests ovarian carcinoma Cell cycle progression, but invasion is unaffected. Cancer Res. 56, 1168–1173 (1996).

    CAS  PubMed  Google Scholar 

  11. Loeffler, D.A., Juneau, P.L. & Masserant, S. Influence of tumour physico-chemical conditions on interleukin-2-stimulated lymphocyte proliferation. Br. J. Cancer 66, 619–622 (1992).

    Article  CAS  Google Scholar 

  12. Suit, H. Tumor oxygenation and radiosensitivity. in Blood Substitutes: Physiological Basis of Efficacy (eds. Winslow, R. M. et al.) 187–199 (Birkhäuser, Boston, 1995).

    Chapter  Google Scholar 

  13. Wike-Hooley, J.L., Haveman, J. & Rheinhold, H.S. The relevance of tumor pH to the treatment of malignant disease. Radiother. Oncol. 2, 343–366 (1984).

    Article  CAS  Google Scholar 

  14. Tannock, I.F. & Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49, 4373–4384 (1989).

    CAS  PubMed  Google Scholar 

  15. Song, C.W., Lyons, J.C. & Luo, Y. Intra-and extraCellular pH in solid tumors: Influence on therapeutic response. in Drug Resistance in Oncology (ed. Teicher, B.A.) 25–51 (Marcel Dekker, New York, 1993).

    Google Scholar 

  16. Ward, K.A. & Jain, R.K. Response of tumours to hyperglycaemia: Characterization, significance and role in hyperthermia. Int. J. Hyperthermia 4, 223–50 (1988).

    Article  CAS  Google Scholar 

  17. Griffiths, J.R. Are cancer Cells acidic? Br. J. Cancer 64, 425–427 (1991).

    Article  CAS  Google Scholar 

  18. Jain, R.K., Shah, S.A. & Finney, P.L. Continuous noninvasive monitoring of pH and temperature in rat Walker 256 carcinoma during normoglycemia and hyperglycemia. J. Natl. Cancer Inst. 73, 429–36 (1984).

    Article  CAS  Google Scholar 

  19. Gray, L.H., Conger, A.S.D., Ebert, M., Hornsey, S. & Scott, O.C.A. The concentration of oxygen dissolved in tissue at the time of irradiation as a factor in radiotherapy. Br. J. Radial. 26, 638–648 (1953).

    Article  CAS  Google Scholar 

  20. Chaplin, D.J. & Acker, B. The effect of hydralazine on the tumor cytotoxicity of the hypoxic Cell cytotoxin RSU 1069: Evidence for therapeutic gain. Int. J. Radial. Oncol. Biol. Phys. 13, 579–586 (1987).

    Article  CAS  Google Scholar 

  21. Skarsgard, L.D., Skwarchuk, M.W., Vinczan, A., Kristl, J. & Chaplin, D.J. The cytotoxicity of melphalan and its relationship to pH, hypoxia and drug uptake. Anticancer Res. 15, 219–224 (1995).

    CAS  PubMed  Google Scholar 

  22. Teicher, B.A., Lazo, J.S. & Sartorelli, A.C. Classification of antineoplastic agents by their selective toxicities towards oxygenated and hypoxic tumor Cells. Cancer Res. 41, 73–81 (1981).

    CAS  PubMed  Google Scholar 

  23. Jähde, E. et al. Hydrogen ion-mediated enhancement of cytotoxicity of bischloroethylating drugs in rat mammary carcinoma Cells in vitro. Cancer Res. 49, 2965–2972 (1989).

    PubMed  Google Scholar 

  24. Karuri, A.R., Dobrowsky, E. & Tannock, I.F. Selective acidification and toxicity of weak organic acids in an acidic microenvironment. Br. J. Cancer 68, 1080–1087 (1993).

    Article  CAS  Google Scholar 

  25. Gerweck, L.E. & Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996).

    CAS  PubMed  Google Scholar 

  26. Hoeckel, M. et al. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother. Oncol. 26, 45–50 (1993).

    Article  Google Scholar 

  27. Engin, K., Leeper, D.B., Thistlethwaite, A.J., Tupchong, L. & McFarlane, J.D. Tumor extraCellular pH as a prognostic factor in thermoradiotherapy. Int. J. Radial. Oncol. Biol. Phys. 29, 125–132 (1994).

    Article  CAS  Google Scholar 

  28. Schwickert, G., Walenta, S., Sundf, K., Rofstad, E.K. & Mueller-Klieser, W. Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res. 55, 4757–4759 (1995).

    CAS  PubMed  Google Scholar 

  29. Brizel, D.M. et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 56, 941–943 (1996).

    CAS  PubMed  Google Scholar 

  30. Vaupel, P.W., Frinak, S. & Bicher, H.I. Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res. 41, 2008–2013 (1981).

    CAS  PubMed  Google Scholar 

  31. Daly, P.F. & Cohen, J.S. Magnetic resonance spectroscopy of tumors and potential in vivo clinical applications: A review. Cancer Res. 49, 770–779 (1989).

    CAS  PubMed  Google Scholar 

  32. Hawkins, R.A. & Phelps, M.E. PET in clinical oncology. Cancer Metastasis Rev. 7, 119–142 (1988).

    Article  CAS  Google Scholar 

  33. Evans, S.M., Jenkins, W.T., Joiner, B., Lord, E.M. & Koch, C.J., 2-Nitroimidazole (EF5) binding predicts radiation resistance in individual 9L s. c. tumors. Cancer Res. 56, 405–411 (1996).

    CAS  PubMed  Google Scholar 

  34. Gullino, P.M., Clark, S.H. & Grantham, F.H. The interstitial fluid of solid tumors. Cancer Res. 24, 780–797 (1964).

    CAS  PubMed  Google Scholar 

  35. Jain, R.K. Delivery of molecular medicine to solid tumors. Science 271, 1079–1080 (1996).

    Article  CAS  Google Scholar 

  36. Warburg, O. The Metabolism of Tumors (R.R. Smith, New York, 1931).

    Google Scholar 

  37. Acker, H., Carlsson, J., Holtermann, G., Nederman, T. & Nylén, T. Influence of glucose and buffer capacity in the culture medium on growth and pH in spheroids of human thyroid carcinoma and human glioma origin. Cancer Res. 47, 3504–3508 (1987).

    CAS  PubMed  Google Scholar 

  38. Sutherland, R.M. et al. Oxygenation and differentiation in multiCellular spheroids of human colon carcinoma. Cancer Res. 46, 5320–5329 (1986).

    CAS  PubMed  Google Scholar 

  39. Casciari, J.J., Sotirchos, S.V. & Sutherland, R.M. Glucose diffusivity in multiCellular tumor spheroids. Cancer Res. 48, 3905–3909 (1988).

    CAS  PubMed  Google Scholar 

  40. Dewhirst, M.W. et al. Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat. Res. 130, 171–182 (1992).

    Article  CAS  Google Scholar 

  41. Torres-Filho, I.P., Leunig, M., Yuan, F., Intaglietta, M. & Jain, R.K. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc. Natl. Acad. Sci. USA 91, 2081–5 (1994).

    Article  CAS  Google Scholar 

  42. Martin, G.R. & Jain, R.K., Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res. 54, 5670–5674 (1994).

    CAS  PubMed  Google Scholar 

  43. Dellian, M., Helmlinger, G., Yuan, F. & Jain, R.K. Interstitial pH in solid tumours measured by fluorescence ratio imaging and optical sectioning: Effect of glucose on spatial and temporal gradients. Br. J. Cancer 74, 1206–1215 (1996).

    Article  CAS  Google Scholar 

  44. Leunig, M. et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553–60 (1992).

    CAS  PubMed  Google Scholar 

  45. Torres Filho, I.P. & Intaglietta, M. Microvessel pO2, measurements by phosphorescence decay method. Am. J. Physiol. 265, H1434–H1438 (1993).

    CAS  PubMed  Google Scholar 

  46. Vanderkooi, J.M., Maniara, G., Green, T.J. & Wilson, D.F. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262, 5476–5482 (1987).

    CAS  PubMed  Google Scholar 

  47. Zheng, L., Golub, A.S. & Pittman, R.N. Determination of pO2, and its heterogeneity in single capillaries. Am. J. Physiol. 271, H365–H372 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmlinger, G., Yuan, F., Dellian, M. et al. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat Med 3, 177–182 (1997). https://doi.org/10.1038/nm0297-177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0297-177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing