Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging

Abstract

The ability to measure the effects of local alterations in blood flow, blood volume and oxygenation by nuclear magnetic resonance has stimulated a surge of activity in functional MRI of many organs, particularly in its application to cognitive neuroscience. However, the exact description of these effects in terms of the interrelations between the MRI signal changes and the basic physiological parameters has remained an elusive goal. We here present this fundamental theory for spin-echo signal changes in perfused tissue and validate it in vivo in the cat brain by using the physiological alteration of hypoxic hypoxia. These experiments show that high-resolution absolute blood volume images can be obtained by using hemoglobin as a natural intravascular contrast agent. The theory also correctly predicts the magnitude of spin-echo MRI signal intensity changes on brain activation and thereby provides a sound physiological basis for these types of studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ogawa, S., Lee, T.M., Kay, A.R. & Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990).

    Article  CAS  Google Scholar 

  2. Moonen, C.T.W. van Zijl, P.C.M. Le Bihan, D., Frank, J. & Becker, E.D. Functional magnetic resonance imaging in medicine and physiology. Science 250, 53–61 (1990).

    Article  CAS  Google Scholar 

  3. Belliveau, J., et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716–719 (1991).

    Article  CAS  Google Scholar 

  4. Shulman, R.G., Rothman, D.L. & Blamire, A.M. Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proc. Natl. Acad. Sci. USA 90, 3127–3133 (1993).

    Article  CAS  Google Scholar 

  5. Ogawa, S., et al. Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging. Biophys. J. 64, 803–812 (1993).

    Article  CAS  Google Scholar 

  6. Ogawa, S., Lee, T.M. & Barrere, B. The sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn. Reson. Med. 29, 205–210 (1993).

    Article  CAS  Google Scholar 

  7. Fabry, M.E. & San George, R.C. Effect of magnetic susceptibility on nuclear magnetic resonance signals arising from red cells. Biochemistry 22, 4119–4125 (1983).

    Article  CAS  Google Scholar 

  8. Thulborn, K.R., Waterton, J.C., Matthews, P.M. & Radda, G.K. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochlm. Biophys. Ada 714, 265–270 (1982).

    CAS  Google Scholar 

  9. Kwong, K.K., et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992).

    Article  CAS  Google Scholar 

  10. Ogawa, S., et al. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89, 5951 (1992).

    Article  CAS  Google Scholar 

  11. Bandettini, PA, Wong, E.C., Hinks, R.S., Tikofsky, R.S. & Hyde, J.S. Time course EPI of human brain function during task activation. Magn. Reson. Med. 25, 390–397 (1992).

    Article  Google Scholar 

  12. Atalay, M.K., Forder, J.R., Chacko, V.P., Kawamoto, S. & Zerhouni, E.A. Oxygenation in the rabbit myocardium: Assessment with susceptibility-dependent MR imaging. Radiology 189, 759–764 (1993).

    Article  CAS  Google Scholar 

  13. Karczmar, G.S., et al. Effects of hyperoxia on T2* and resonance frequency weighted magnetic resonance images of rodent tumors. NMR Biomed. 7, 3–11 (1994).

    Article  CAS  Google Scholar 

  14. Robinson, S.P., Howe, F.A. & Griffiths, J.R. Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int. J. Radial Oncol. Biol. Phys. 33, 961–962 (1995).

    Article  Google Scholar 

  15. Turner, R., Le Bihan, D., Moonen, C.T.W. DesPres, D. & Frank, J. . Echo-planar time course MRI of cat brain oxygenation changes. Magn. Reson. Med. 22, 159–166 (1991).

    Article  CAS  Google Scholar 

  16. Jezzard, P., et al. Comparison of EPI gradient-echo contrast changes in cat brain caused by respiratory challenges with direct simultaneous evaluation of cerebral oxygenation via a cranial window. NMR Biomed. 7, 35–44 (1994).

    Article  CAS  Google Scholar 

  17. de Crespigny, A.J., Wendland, M.F., Derugin, N., Kozniewska, E. & Moseley, M.E. Real-time observation of transient focal ischemia and hyperemia in cat brain. Magn. Reson. Med. 27, 391–397 (1992).

    Article  CAS  Google Scholar 

  18. Roussel, S.A., van Bruggen, N., King, M.D. & Gadian, D.G. Identification of collaterally perfused areas following focal cerebral ischemia in the rat by comparison of gradient echo and diffusion-weighted MRI. J. Cereb. Blood Flow Metab. 15, 578–586 (1995).

    Article  CAS  Google Scholar 

  19. Prielmeyer, F., Nagatomo, Y. & Frahm, J. Cerebral blood oxygenation in rat brain during hypoxic hypoxia: Quantitative MRI of effective transverse relaxation rates. Magn. Reson. Med. 31, 678–681 (1994).

    Article  Google Scholar 

  20. Haacke, E.M., Lai, S., Yablonsky, D.A. & Lin, W. In vivo validation of the BOLD mechanism: A review of signal changes in gradient echo functional MRI in the presence of flow. Int. J. Imag. Syst. Techn. 6, 153–163 (1995).

    Article  Google Scholar 

  21. Bandettini, P.A. & Wong, E.C. Effects of biophysical and physiologic parameters on brain activation-induced R2* and R2 changes: Simulations using a deterministic diffusion model. Int. J. Imag. Syst. Techn. 6, 133–152 (1995).

    Article  Google Scholar 

  22. Boxerman, J.L., Hamberg, L.M., Rosen, B.R. & Weisskoff, R.M. MR contrast due to intravascular magnetic susceptibility variations. Magn. Reson. Med. 34, 555–566 (1995).

    Article  CAS  Google Scholar 

  23. Fox, P.T., Raichle, M.E., Mintun, M.A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464 (1988).

    Article  CAS  Google Scholar 

  24. Hyder, F., et al. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected by 1H[13C] NMR. Proc. Natl. Acad. Sci. USA 93, 7612–17 (1996).

    Article  CAS  Google Scholar 

  25. Barinaga, M. What makes brain neurons run? Science 276, 196–198 (1997).

    Article  CAS  Google Scholar 

  26. Siesjo, B.K. Brain Energy Metabolism. (Wiley & Sons, Chichester, (1978).

  27. Koehler, R.C., Traystman, R.J., Zeger, S., Rogers, M.C. & Jones, M.D., jr . Comparison of cerebrovascular response to hypoxic and carbomonoxic hypoxia in newborn and adult sheep. J. Cereb. Blood Flow Metab. 4, 115–122 (1984).

    Article  CAS  Google Scholar 

  28. Ekström-Jodal, B., Elfverson, j. & von Essen, C. Cerebral blood flow, cerebrovascular resistance and cerebral metabolic rate of oxygen in severe arterial hypoxia in dogs. Acta Neurol. Scand. 60, 26–35 (1979).

    Article  Google Scholar 

  29. Bandettini, P.A., Wong, E.C., jesmanowicz, A., Hinks, R.S. & Hyde, J.S. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: A comparative study at 1.5 T. NMR Biomed. 7, 12–20 (1994).

    Article  CAS  Google Scholar 

  30. Sharan, M., Jones, M.D. Jr,, Koehler, R.C., Traystman, R.J. & Popel, A.S. A compart-mental model for oxygen transport in brain microcirculation. Ann. Biomed. Eng. 17, 13–38 (1989).

    Article  CAS  Google Scholar 

  31. Leenders, K.L., et al. Cerebral blood flow, blood volume and oxygen utilization: Normal values and effect of age. Brain 113, 27–47 (1990).

    Article  Google Scholar 

  32. Pawlik, C., Rackl, A. & Bing, R.J. Quantitative capillary topography and blood flow in the cerebral cortex of cats: An in vivo microscopic study. Brain Res. 208, 35–58 (1981).

    Article  CAS  Google Scholar 

  33. Ulatowski, J.A., et al. Cerebral O2 transport with hematocrit reduced by cross-linked hemoglobin transfusion. Am. J. Physiol. 270, H466–H475 (1996).

    CAS  PubMed  Google Scholar 

  34. Herbst, M.D. & Goldstein, J.H. A review of water diffusion measurement by NMR in red blood cells. Am. J. Physiol. 256, C1097–C1104 (1989).

    Article  CAS  Google Scholar 

  35. Bryant, R.G., Marill, K., Blackmore, C. & Francis, C. Magnetic relaxation in blood and blood clots. Magn. Reson. Med. 13, 133–144 (1990).

    Article  CAS  Google Scholar 

  36. Gomori, J.M., Grossman, R.I., Yu-lp, C. & Asakura, T. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J. Comput Assist Tomogr. 11, 684–690 (1987).

    Article  CAS  Google Scholar 

  37. Gilles, P., Petö, S., Moiny, F., Mispelter, J. & Cuenod, C.-A. Proton transverse nuclear magnetic relaxation in oxidized blood: A numerical approach. Magn. Reson. Med. 33, 93–100 (1995).

    Article  Google Scholar 

  38. Meyer, M.-E. Yu, O., Eclancher, B., Grucker, D. & Chambron, J. NMR relaxation rates and blood oxygenation level. Magn. Reson. Med. 34, 234–241 (1995).

    Article  CAS  Google Scholar 

  39. Ye, F.Q. & Allen, P.S. Relaxation enhancement of the transverse magnetization of water protons in paramagnetic suspensions of red blood cells. Magn. Reson. Med. 34, 713–720 (1995).

    Article  CAS  Google Scholar 

  40. Allerhand, A. & Gutowsky, H.S. Spin-echo NMR studies of chemical exchang. I. Some general aspectse. J. Chem. Phys. 41, 2115–2126 (1964).

    Article  CAS  Google Scholar 

  41. Eichling, J., Raichle, M., Grubb, R. & Ter-Pogossian, M. Evidence of the limitations of water as a freely diffusable tracer in brain of the Rhesus monkey. Circ. Res. 35, 358–364 (1974).

    Article  CAS  Google Scholar 

  42. Paulson, O., Hertz, M., Bolwig, T. & Lassen, N. Filtration and diffusion of water across the blood brain barrier in man. Microvasc. Res. 13, 113–124 (1977).

    Article  CAS  Google Scholar 

  43. Wu, X., Ewert, D.L., Y.-H.,L. & Ritman, E.L. In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for auto-regulation. Circulation 85, 730–737 (1992).

    Article  CAS  Google Scholar 

  44. Grubb, R.L., Raichle, M.E., Eichling, J.O. & Ter-Pogossian, M.M. The effects of changes in PaCO2 on cerebral blood volume, blood flow and vascular mean transit time. Stroke 5, 630–639 (1974).

    Article  Google Scholar 

  45. Shockley, R.P. & LaManna, J.C. Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Res. 454, 170–178 (1988).

    Article  CAS  Google Scholar 

  46. Smith, A.L., Neufeld, G.R., Ominsky, A.J. & Wollman, R. Effect of arterial CO2 tension on cerebral blood flow, mean transit time and vascular volume. J. Appl. Physiol. 31, 701–707 (1971).

    Article  CAS  Google Scholar 

  47. Brooks, R.A., Di Chiro, G. & Keller, M.R. Explanation of cerebral white-gray contrast in computed tomography. J. Comput. Assist. Tomogr. 4, 489–491 (1980).

    Article  CAS  Google Scholar 

  48. Ueki, M., Mies, G. & Hossmann, K.A. Effect of α-chloralose, halothane, pentobarbi-tal and nitrous oxide anesthesia on metabolic coupling in the somatosensory cortex of rat. Acta Anaesth. Scand. 36, 318–322 (1992).

    Article  CAS  Google Scholar 

  49. Hoppel, B.E., et al. Measurement of regional blood oxygenation and cerebral hemodynamics. Magn. Reson. Med. 30, 715–723 (1993).

    Article  CAS  Google Scholar 

  50. Boxerman, J.L., et al. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn. Reson. Med. 34, 4–10 (1995).

    Article  CAS  Google Scholar 

  51. Song, A.W., Wong, E.C., Tan, S.G. & Hyde, J.S. Diffusion weighted fMRI at 1.5T. Magn. Reson. Med. 35, 155–158 (1996).

    Article  CAS  Google Scholar 

  52. Rostrup, E., Larsson, H.B.W. Toft, P.B., Garde, K. & Hendriksen, O. Signal changes in gradient echo images of human brain induced by hypo- and hyperoxia. NMR Biomed. 8, 41–47 (1995).

    Article  CAS  Google Scholar 

  53. Madsen, P.L., et al. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: Evidence obtained with the Kety-Schmidt technique. J. Cereb. Blood Flow Metab. 15, 485–491 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Zijl, P., Eleff, S., Ulatowski, J. et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 4, 159–167 (1998). https://doi.org/10.1038/nm0298-159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing