Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of glioma invasiveness: the role of proteases

Key Points

  • Gliomas encompass all primary central nervous system (CNS) tumours of glial-cell origin. The invasive nature of brain cancer cells has an important role in the ineffectiveness of current treatment modalities, as the remaining cancer cells inevitably infiltrate the surrounding normal brain tissue and lead to tumour recurrence.

  • This process of invasion includes increased synthesis and secretion of several proteases, such as cysteine, serine and metalloproteinases, to degrade extracellular-matrix (ECM) components selectively. These proteases also have a role in establishing and maintaining a microenvironment that facilitates tumour-cell survival. Interference with proteases might therefore inhibit tumour growth.

  • The ECM — which is a key component of the tissue destroyed by tumour-cell invasion — is a dynamic environment that has a pivotal role in regulating cellular functions during normal and pathological remodelling processes, such as embryonic development, tissue repair, inflammation, and tumour invasion and metastasis.

  • Protease profiling studies have indicated that expression of the serine protease urokinase-type plasminogen activator (uPA) and its receptor (uPAR), of the cysteine protease cathepsin B and of the matrix metalloproteinases MMP2 and MMP9 is increased in high-grade astrocytomas compared with low-grade astrocytomas or the normal brain.

  • Strategies to prevent the expression of uPA and uPAR at the molecular level have led to significant reduction/inhibition of tumour invasion and growth.

  • Downregulation of MMP2 and MMP9 expression through approaches such as MMP inhibitors or antisense vectors results in less tumour-cell invasion and the inhibition of tumour growth and angiogenesis.

  • Recent studies of cathepsin B using antisense vectors and its natural inhibitor, cystatin C, have shown significantly reduced tumour invasiveness and formation.

  • Reports indicate that these proteases interact with each other and can directly and indirectly facilitate the expression of other proteases. As such, the downregulation of expression of one molecule seems to cause the inhibition of other molecules and/or pathways.

  • Further research on these proteases at the molecular level should lead to the development of target-selective clinical treatments for patients with gliomas.

Abstract

The invasive nature of brain-tumour cells makes an important contribution to the ineffectiveness of current treatment modalities, as the remaining tumour cells inevitably infiltrate the surrounding normal brain tissue, which leads to tumour recurrence. Such local invasion remains an important cause of mortality and underscores the need to understand in more detail the mechanisms of tumour invasiveness. Several proteases influence the malignant characteristics of gliomas — could their inhibition prove to be a useful therapeutic strategy?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glial cells and gliomas.
Figure 2: The uPA–uPAR pathway.
Figure 3: MMPs promote growth of cancer cells.
Figure 4: MMP inhibition.
Figure 5: The cathepsin-B proteolytic cascade.

Similar content being viewed by others

References

  1. Avgeropoulos, N. G., Batchelor, T. T. New treatment strategies for malignant gliomas. Oncologist 4, 209–224 (1999).

    CAS  PubMed  Google Scholar 

  2. Sheline, G. E. Tumors of the Brain (ed. Blehen, N. M.) 83–99 (Springer–Verlag, Berlin, 1986).

    Google Scholar 

  3. Barker, F. G. et al. Age and radiation response in glioblastoma multiforme. Neourosurgery 49, 1288–1298 (2001).

    Google Scholar 

  4. Bignami, A. & Asher, R. Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain. Int. J. Dev. Neurosci. 10, 45–57 (1992).

    CAS  PubMed  Google Scholar 

  5. Dano, K. et al. Plasminogen activators, tissue degradation and cancer. Adv. Cancer Res. 44, 139–266 (1985).

    CAS  PubMed  Google Scholar 

  6. Naldini, L. et al. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J. 11, 4825–4833 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nielsen, L. S., Andreasen, P. A., Grondahl-Hansen, J., Skriver, L. & Dano, K. Plasminogen activators catalyse conversion of inhibitor from fibrosarcoma cells to an inactive form with a lower apparent molecular mass. FEBS Lett. 196, 269–273 (1986).

    CAS  PubMed  Google Scholar 

  8. Vassalli, J. D., Baccino, D. & Belin, D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J. Cell Biol. 100, 86–92 (1985).

    CAS  PubMed  Google Scholar 

  9. Zhou, H. M., Nichols, A., Meda, P. & Vassalli, J. D. Urokinase-type plasminogen activator and its receptor synergize to promote pathogenic proteolysis. EMBO J. 19, 4817–4826 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ossowski, L. & Aguirre-Ghiso, J. A. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr. Opin. Cell Biol. 12, 613–620 (2000).

    CAS  PubMed  Google Scholar 

  11. Sidenius, N., Andolfo, A., Fesce, R. & Blasi, F. Urokinase regulates vitronectin binding by controlling urokinase receptor oligomerization. J. Biol. Chem. 277, 27982–27990 (2002).

    CAS  PubMed  Google Scholar 

  12. Blasi, F. & Carmeliet, P. uPAR: a versatile signalling orchestrator. Nature Rev. Mol. Cell Biol. 3, 932–943 (2002).

    CAS  Google Scholar 

  13. Resnati, M. et al. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc. Natl Acad. Sci. USA 99, 1359–1364 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamamoto, M. et al. Expression and localization of urokinase-type plasminogen activator in human astrocytomas in vivo. Cancer Res. 54, 3656–3661 (1994).

    CAS  PubMed  Google Scholar 

  15. Gladson, C. L., Pijuan-Thompson, V., Olman, M. A., Gillespie, G. Y. & Yacoub, I. Z. Up-regulation of urokinase and urokinase receptor genes in malignant astrocytoma. Am. J. Pathol. 146, 1150–1160 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lakka, S. S., Bhattacharya, A., Mohanam, S., Boyd, D. & Rao, J. S. Regulation of the uPA gene in various grades of human glioma cells. Int. J. Oncol. 18, 71–79 (2001).

    CAS  PubMed  Google Scholar 

  17. Arai, Y. et al. Production of urokinase-type plasminogen activator (u-PA) and plasminogen activator inhibitor-1 (PAI-1) in human brain tumours. Acta Neurochir. (Wien) 140, 377–385 (1998).

    CAS  Google Scholar 

  18. Zhang, X. et al. Expression and localisation of urokinase-type plasminogen activator gene in gliomas. J. Clin. Neurosci. 7, 116–119 (2000).

    CAS  PubMed  Google Scholar 

  19. Mohanam, S. et al. Elevated levels of urokinase-type plasminogen activator and its receptor during tumor growth in vivo. Int. J. Oncol. 14, 169–174 (1999).

    CAS  PubMed  Google Scholar 

  20. Mohanam, S. et al. Modulation of in vitro invasion of human glioblastoma cells by urokinase-type plasminogen activator receptor antibody. Cancer Res. 53, 4143–4147 (1993).

    CAS  PubMed  Google Scholar 

  21. Yamamoto, M. et al. Expression and localization of urokinase-type plasminogen activator receptor in human gliomas. Cancer Res. 54, 5016–5020 (1994). Showed that expression of urokinase-type plasminogen activator (uPA) was significantly higher in anaplastic astrocytomas and glioblastomas, and uPA receptor (uPAR) mRNA was localized in astrocytoma cells and endothelial cells in the tumour tissue, which indicates that the expression of uPAR by invading astrocytoma cells might be important for the invasive behaviour of glioblastomas.

    CAS  PubMed  Google Scholar 

  22. Czekay, R. P. et al. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol. Biol. Cell 12, 1467–1479 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamamoto, M. et al. Expression and cellular localization of low-density lipoprotein receptor-related protein/α2-macroglobulin receptor in human glioblastoma in vivo. Brain Tumor Pathol. 15, 23–30 (1998).

    CAS  PubMed  Google Scholar 

  24. Mori, T. et al. Up-regulation of urokinase-type plasminogen activator and its receptor correlates with enhanced invasion activity of human glioma cells mediated by transforming growth factor-α or basic fibroblast growth factor. J. Neurooncol. 46, 115–123 (2000).

    CAS  PubMed  Google Scholar 

  25. Bhattacharya, A., Lakka, S. S., Mohanam, S., Boyd, D. & Rao, J. S. Regulation of the urokinase-type plasminogen activator receptor gene in different grades of human glioma cell lines. Clin. Cancer Res. 7, 267–276 (2001).

    CAS  PubMed  Google Scholar 

  26. Mohanam, S. et al. Increased invasion of neuroglioma cells transfected with urokinase plasminogen activator receptor cDNA. Int. J. Oncol. 13, 1285–1290 (1998).

    CAS  PubMed  Google Scholar 

  27. Engelhard, H., Narang, C., Homer, R. & Duncan, H. Urokinase antisense oligodeoxynucleotides as a novel therapeutic agent for malignant glioma: in vitro and in vivo studies of uptake, effects and toxicity. Biochem. Biophys. Res. Commun. 227, 400–405 (1996).

    CAS  PubMed  Google Scholar 

  28. Engelhard, H. H., Homer, R. J., Duncan, H. A. & Rozental, J. Inhibitory effects of phenylbutyrate on the proliferation, morphology, migration and invasiveness of malignant glioma cells. J. Neurooncol. 37, 97–108 (1998).

    CAS  PubMed  Google Scholar 

  29. Mishima, K. et al. A peptide derived from the non-receptor-binding region of urokinase plasminogen activator inhibits glioblastoma growth and angiogenesis in vivo in combination with cisplatin. Proc. Natl Acad. Sci. USA 97, 8484–8489 (2000). Showed that a peptide derived from the connecting peptide region of uPA inhibits endothelial-cell migration in vitro and tumour angiogenesis in vivo and has potential for clinical use.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohanam, S. et al. Stable transfection of urokinase-type plasminogen activator antisense construct modulates invasion of human glioblastoma cells. Clin. Cancer Res. 7, 2519–2526 (2001).

    CAS  PubMed  Google Scholar 

  31. Mohanam, S. et al. Modulation of invasive properties of human glioblastoma cells stably expressing amino-terminal fragment of urokinase-type plasminogen activator. Oncogene 21, 7824–7830 (2002).

    CAS  PubMed  Google Scholar 

  32. Mohanam, S. et al. In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor. Oncogene 14, 1351–1359 (1997). Showed that uPAR expression was reduced in glioblastoma cell lines stably transfected with antisense-uPAR. These cells had a low level of invasion and migration compared with controls. However, there was no difference in uPA activity. Matrix metalloproteinase 2 (MMP2) activity was decreased in antisense-expressing clones compared with controls.

    CAS  PubMed  Google Scholar 

  33. Go, Y. et al. Inhibition of in vivo tumorigenicity and invasiveness of a human glioblastoma cell line transfected with antisense uPAR vectors. Clin. Exp. Metastasis 15, 440–446 (1997).

    CAS  PubMed  Google Scholar 

  34. Mohan, P. M. et al. Adenovirus-mediated delivery of antisense gene to urokinase-type plasminogen activator receptor suppresses glioma invasion and tumor growth. Cancer Res. 59, 3369–3373 (1999).

    CAS  PubMed  Google Scholar 

  35. Chintala, S. K. et al. Altered in vitro spreading and cytoskeletal organization in human glioma cells by downregulation of urokinase receptor. Mol. Carcinog. 20, 355–365 (1997).

    CAS  PubMed  Google Scholar 

  36. MacDonald, T. J., DeClerck, Y. A. & Laug, W. E. Urokinase induces receptor mediated brain tumor cell migration and invasion. J. Neurooncol. 40, 215–226 (1998).

    CAS  PubMed  Google Scholar 

  37. Hedberg, K. K., Stauff, C., Hoyer-Hansen, G., Ronne, E. & Griffith, O. H. High-molecular-weight serum protein complexes differentially promote cell migration and the focal adhesion localization of the urokinase receptor in human glioma cells. Exp. Cell Res. 257, 67–81 (2000).

    CAS  PubMed  Google Scholar 

  38. Kin, Y. et al. A novel role for the urokinase-type plasminogen activator receptor in apoptosis of malignant gliomas. Int. J. Oncol. 17, 61–65 (2000).

    CAS  PubMed  Google Scholar 

  39. Yanamandra, N. et al. Downregulation of urokinase-type plasminogen activator receptor (uPAR) induces caspase-mediated cell death in human glioblastoma cells. Clin. Exp. Metastasis 18, 611–615 (2000).

    CAS  PubMed  Google Scholar 

  40. Krishnamoorthy, B. et al. Glioma cells deficient in urokinase plaminogen activator receptor expression are susceptible to tumor necrosis factor-α-related apoptosis-inducing ligand-induced apoptosis. Clin. Cancer Res. 7, 4195–4201 (2001).

    CAS  PubMed  Google Scholar 

  41. Fahraeus, R. & Lane, D. P. The p16(INK4a) tumour suppressor protein inhibits αvβ3 integrin-mediated cell spreading on vitronectin by blocking PKC-dependent localization of αvβ3 to focal contacts. EMBO J. 18, 2106–2118 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Adachi, Y. et al. Down-regulation of integrin αvβ3 expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes. J. Biol. Chem. 276, 47171–47177 (2001). The authors infected the malignant glioma cell line SNB19 with the adenovirus vectors Ad-uPAR, Ad-INK4A or Ad-uPAR–INK4A in the presence of vitronectin, and showed that this resulted in decreased expression of αvβ3 integrin and decreased integrin-mediated biological effects, including adhesion, migration, proliferation and survival.

    CAS  PubMed  Google Scholar 

  43. Adachi, Y. et al. Suppression of glioma invasion and growth by adenovirus-mediated delivery of a bicistronic construct containing antisense uPAR and sense p16 gene sequences. Oncogene 21, 87–95 (2002).

    CAS  PubMed  Google Scholar 

  44. Vallera, D. A., Li, C., Jin, N., Panoskaltsis-Mortari, A. & Hall, W. A. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J. Natl Cancer Inst. 94, 597–606 (2002). This paper showed that DTAT was highly potent and selective in killing uPAR-expressing glioblastoma cells and human umbilical-vein endothelial cells in vitro and caused a statistically significant regression of small U118MG tumours in all mice in vivo with no systemic effects.

    CAS  PubMed  Google Scholar 

  45. Alonso, D. F., Tejera, A. M., Farias, E. F., Bal de Kier, J. E. & Gomez, D. E. Inhibition of mammary tumor cell adhesion, migration, and invasion by the selective synthetic urokinase inhibitor B428. Anticancer Res. 18, 4499–4504 (1998).

    CAS  PubMed  Google Scholar 

  46. Sturzebecher, J. et al. 3-Amidinophenylalanine-based inhibitors of urokinase. Bioorg. Med. Chem. Lett. 9, 3147–3152 (1999).

    CAS  PubMed  Google Scholar 

  47. Evans, D. M., Sloan-Stakleff, K., Arvan, M. & Guyton, D. P. Time and dose dependency of the suppression of pulmonary metastases of rat mammary cancer by amiloride. Clin. Exp. Metastasis 16, 353–357 (1998).

    CAS  PubMed  Google Scholar 

  48. Behrendt, N., Ronne, E. & Dano, K. Binding of the urokinase-type plasminogen activator to its cell surface receptor is inhibited by low doses of suramin. J. Biol. Chem. 268, 5985–5989 (1993).

    CAS  PubMed  Google Scholar 

  49. Sato, S. et al. High-affinity urokinase-derived cyclic peptides inhibiting urokinase/urokinase receptor-interaction: effects on tumor growth and spread. FEBS Lett. 528, 212–216 (2002).

    CAS  PubMed  Google Scholar 

  50. Shingleton, W. D., Hodges, D. J., Brick, P. & Cawston, T. E. Collagenase: a key enzyme in collagen turnover. Biochem. Cell Biol. 74, 759–775 (1996).

    CAS  PubMed  Google Scholar 

  51. Overall, C. M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 22, 51–86 (2002).

    CAS  PubMed  Google Scholar 

  52. Gomez, D. E., Alonso, D. F., Yoshiji, H. & Thorgeirsson, U. P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell. Biol. 74, 111–122 (1997).

    CAS  PubMed  Google Scholar 

  53. Westermarck, J. & Kahari, V. -M. Regulation of matrix metalloproteinase expression in tumour invasion. FASEB J. 13, 781–792 (1999).

    CAS  PubMed  Google Scholar 

  54. Westermarck, J., Seth, A. & Kahari, V. M. Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors. Oncogene 14, 2651–2660 (1997).

    CAS  PubMed  Google Scholar 

  55. Yabkowitz, R. et al. Inflammatory cytokines and vascular endothelial growth factor stimulate the release of soluble tie receptor from human endothelial cells via metalloprotease activation. Blood 93, 1969–1979 (1999).

    CAS  PubMed  Google Scholar 

  56. Chintala, S. K. et al. Induction of matrix metalloproteinases-9 requires a polymerized actin cytoskeleton in human malignant glioma cells. J. Biol. Chem. 273, 13545–13551 (1998). This paper showed that cytochalasin-D treatment of SNB19 cells resulted in the loss of PMA-induced MMP9 expression and actin polymerization, resulting in cell rounding. MMP9 expression was also inhibited by calphostin-C, a protein-kinase inhibitor, which indicates the involvement of protein kinase C in MMP9 expression.

    CAS  PubMed  Google Scholar 

  57. Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L & Matrisian, L. M. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl Acad. Sci. USA 94, 1402–1407 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Masson, R. et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J. Cell Biol. 140, 1535–1541 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Itoh, T. et al. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin. Exp. Metastasis 17, 177–181 (1999).

    CAS  PubMed  Google Scholar 

  60. Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051 (1998).

    CAS  PubMed  Google Scholar 

  61. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol. 17, 463–516 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000). The authors showed that MMP9 expressed by inflammatory cells is functionally involved in the regulation of oncogene-induced keratinocyte hyperproliferation, progression to invasive cancer and end-stage malignant grade in K14–HPV16 transgenic mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    CAS  PubMed  Google Scholar 

  64. Chandrasekar, N. et al. Modulation of endothelial cell morphogenesis in vitro by MMP-9 during glial–endothelial cell interactions. Clin. Exp. Metastasis 18, 337–342 (2000).

    CAS  PubMed  Google Scholar 

  65. Tanaka, K., Abe, M. & Sato, Y. Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J. Cancer Res. 90, 647–654 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McCawley, L. J. & Matrisian, L. M. Matrix metalloproteinases: they're not just for matrix anymore! Curr. Opin. Cell Biol. 13, 534–540 (2001).

    CAS  PubMed  Google Scholar 

  67. Platten, M., Wick, W. & Weller, M. Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis and immune escape. Microsc. Res. Tech. 52, 401–410 (2001).

    CAS  PubMed  Google Scholar 

  68. Rao, J. S. et al. Elevated levels of Mr 92,000 type IV collagenase in human brain tumors. Cancer Res. 53, 2208–2211 (1993).

    CAS  PubMed  Google Scholar 

  69. Forsyth, P. A. et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br. J. Cancer 79, 1828–1835 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rooprai, H. K. & McCormick, D. Proteases and their inhibitors in human brain tumours: a review. Anticancer Res. 17, 4151–4162 (1997).

    CAS  PubMed  Google Scholar 

  71. Vos, C. M. et al. Matrix metalloprotease-9 release from monocytes increases as a function of differentiation: implications for neuroinflammation and neurodegeneration. J. Neuroimmunol. 109, 221–227 (2000).

    CAS  PubMed  Google Scholar 

  72. Sawaya, R. E. et al. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin. Exp. Metastasis 14, 35–42 (1996).

    CAS  PubMed  Google Scholar 

  73. Sawaya, R. et al. Elevated levels of Mr 92,000 type IV collagenase during tumor growth in vivo. Biochem. Biophys. Res. Commun. 251, 632–636 (1998).

    CAS  PubMed  Google Scholar 

  74. Lakka, S. S. et al. Regulation of MMP-9 (type IV collagenase) production and invasiveness in gliomas by the extracellular signal-regulated kinase and jun amino-terminal kinase signaling cascades. Clin. Exp. Metastasis 18, 245–252 (2000).

    CAS  PubMed  Google Scholar 

  75. Choe, G. et al. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin. Cancer Res. 8, 2894–2901 (2002).

    CAS  PubMed  Google Scholar 

  76. Ellerbrook, S. M. et al. Phosphatidyl inositol 3-kinase activity in epidermal growth factor stimulated matrix metallproteinases-9 production and cell surface association. Cancer Res. 61, 1855–1861 (2001).

    Google Scholar 

  77. Park, M. J. et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res. 62, 6318–6322 (2002).

    CAS  PubMed  Google Scholar 

  78. Chintala, S. K. et al. Altered actin cytoskeleton and inhibition of matrix metalloproteinase expression by vanadate and phenylarsine oxide, inhibitors of phosphotyrosine phosphatases: modulation of migration and invasion of human malignant glioma cells. Mol. Carcinog. 26, 274–285 (1999).

    CAS  PubMed  Google Scholar 

  79. Kondraganti, S. et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 60, 6851–6855 (2000). Showed that SNB19 stable transfectants for antisense-MMP9 expressed decreased levels of MMP9 protein and mRNA. Invasion in vitro and intracranial tumour growth in vivo were also inhibited in these stable antisense-expressing cells, indicating the role of MMP9 in tumour growth and invasion.

    CAS  PubMed  Google Scholar 

  80. Lakka, S. S. et al. Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene 21, 8011–8019 (2002).

    CAS  PubMed  Google Scholar 

  81. Brand, K. et al. Treatment of colorectal liver metastases by adenoviral transfer of tissue inhibitor of metalloproteinases-2 into the liver tissue. Cancer Res. 60, 5723–5730 (2000).

    CAS  PubMed  Google Scholar 

  82. Celiker, M. Y. et al. Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene 20, 4337–4343 (2001).

    CAS  PubMed  Google Scholar 

  83. Rao, J. S. et al. Role of plasminogen activator and of 92-kDa type IV collagenase in glioblastoma invasion using an in vitro matrigel model. J. Neurooncol. 18, 129–138 (1994).

    CAS  PubMed  Google Scholar 

  84. Matsuzawa, K., Fukuyama, K., Hubbard, S. L., Dirks, P. B. & Rutka, J. T. Transfection of an invasive human astrocytoma cell line with a TIMP-1 cDNA: modulation of astrocytoma invasive potential. J. Neuropathol. Exp. Neurol. 55, 88–96 (1996).

    CAS  PubMed  Google Scholar 

  85. Valente, P. et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int. J. Cancer 75, 246–253 (1998).

    CAS  PubMed  Google Scholar 

  86. Wang, Z., Juttermann, R. & Soloway, P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem. 275, 26411–26415 (2000).

    CAS  PubMed  Google Scholar 

  87. Yoshiji, H. et al. Vascular endothelial growth factor tightly regulates in vivo development of murine hepatocellular carcinoma cells. Hepatology 28, 1489–1496 (1998).

    CAS  PubMed  Google Scholar 

  88. Price, A. et al. Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin. Cancer Res. 5, 845–854 (1999).

    CAS  PubMed  Google Scholar 

  89. Tonn, J. C. et al. Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int. J. Cancer 80, 764–772 (1999).

    CAS  PubMed  Google Scholar 

  90. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    CAS  PubMed  Google Scholar 

  91. Johansson, N. et al. Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J. Cell Sci. 113, 227–235 (2000).

    CAS  PubMed  Google Scholar 

  92. Shin, M., Yan, C. & Boyd, D. An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNA-binding and PMA-inducible 92-kDa type IV collagenase expression. Biochim. Biophys. Acta 1589, 311–316 (2002).

    CAS  PubMed  Google Scholar 

  93. Lakka, S. S. et al. Downregulation of MMP-9 in ERK-mutated stable transfectants inhibits glioma invasion in vitro. Oncogene 21, 5601–5608 (2002). Shows that the ERK-dependent signalling pathway seems to regulate MMP-9 mediated glioma invasion.

    CAS  PubMed  Google Scholar 

  94. Sun, Y. et al. Wild-type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem. 275, 11327–11332 (2000).

    CAS  PubMed  Google Scholar 

  95. Park, M. J. et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res. 62, 6318–6322 (2002). Showed that hyaluronic acid induces the invasion of glioma cells by the induction of MMP9 through the FAK–ERK1/ERK2 signalling pathway. Introduction of a functional PTEN gene decreases these effects, and the protein-phosphatase activity of PTEN is crucial for these events.

    CAS  PubMed  Google Scholar 

  96. Koul, D. et al. Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN. Oncogene 20, 6669–6678 (2001).

    CAS  PubMed  Google Scholar 

  97. Lund, L. R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J. 18, 4645–4656 (1999). The authors show that both plasminogen deficiency and MMP inhibition are required for complete inhibition of the healing process. This indicates that there is a functional overlap between the two classes of matrix-degrading proteases. The strong similarities between the proteolytic mechanisms in wound healing and cancer invasion indicate that cancer therapy will require the use of inhibitors of both classes of protease.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rooprai, H. K. et al. The role of integrin receptors in aspects of glioma invasion in vitro. Int. J. Dev. Neurosci. 17, 613–623 (1999).

    CAS  PubMed  Google Scholar 

  99. Chintala, S. K., Sawaya, R., Gokaslan, Z. L. & Rao, J. S. Modulation of matrix metalloprotease-2 and invasion in human glioma cells by α3β1 integrin. Cancer Lett. 103, 201–208 (1996).

    CAS  PubMed  Google Scholar 

  100. Silletti, S., Kessler, T., Goldberg, J., Boger, D. L. & Cheresh, D. A. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc. Natl Acad. Sci. USA 98, 119–124 (2001).

    CAS  PubMed  Google Scholar 

  101. Rooprai, H. K. et al. Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathol. Appl. Neurobiol. 27, 29–39 (2001).

    CAS  PubMed  Google Scholar 

  102. Kirschke, H., Barrett, A. J. & Rawlings, N. D. Proteinases 1: lysosomal cysteine proteinases. Protein Profile 2, 1581–1643 (1995).

    CAS  PubMed  Google Scholar 

  103. Sloane, B. F. et al. in Biological Functions of Proteases and Inhibitors (eds Katunama, N., Suzuki, J., Travis, J. & Fritz, H.) 131–147 (Scientific Societies Press, Tokyo, Japan, 1994).

    Google Scholar 

  104. Qian, F., Frankfater, A., Chan, S. J. & Steiner, D. F. The structure of the mouse cathepsin B gene and its putative promoter. DNA Cell Biol. 10, 159–168 (1991).

    CAS  PubMed  Google Scholar 

  105. Yan, S., Berquin, I. M., Troen, B. R. & Sloane, B. F. Transcription of human cathepsin B is mediated by Sp1 and Ets family factors in glioma. DNA Cell Biol. 19, 79–91 (2000).

    CAS  PubMed  Google Scholar 

  106. Konduri, S. et al. Elevated levels of cathepsin B in human glioblastoma cell lines. Int. J. Oncol. 19, 519–524 (2001).

    CAS  PubMed  Google Scholar 

  107. Spiess, E. et al. Cathepsin B activity in human lung tumor cell lines: ultrastructural localization, pH sensitivity and inhibitor status at the cellular level. J. Histochem. Cytochem. 42, 917–929 (1994).

    CAS  PubMed  Google Scholar 

  108. Kobayashi, H. et al. Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res. 52, 3610–3614 (1992).

    CAS  PubMed  Google Scholar 

  109. Koblinski, J. E. et al. Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J. Biol. Chem. 277, 32220–32227 (2002).

    CAS  PubMed  Google Scholar 

  110. Somanna, A., Mundodi, V. & Gedamu, L. Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor-β. J. Biol. Chem. 277, 25305–25312 (2002). The authors used the cathepsin-B-specific inhibitor CA074 and antisense mRNA to show that Leishmania cathepsin B has a role in survival and pathogenesis by activating latent TGF-β, thereby allowing the parasite to replicate in macrophages.

    CAS  PubMed  Google Scholar 

  111. Eeckhout, Y. & Vaes, G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 166, 21–31 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Emmert-Buck, M. R. et al. Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am. J. Pathol. 145, 1285–1290 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kostoulas, G., Lang, A., Nagase, H. & Baici, A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 455, 286–290 (1999).

    CAS  PubMed  Google Scholar 

  114. Kostoulas, G., Lang, A., Nagase, H. & Baici, A. Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases. FEBS Lett. 455, 286–290 (1999).

    CAS  PubMed  Google Scholar 

  115. McCormick, D. Secretion of cathepsin B by human gliomas in vitro. Neuropathol. Appl. Neurobiol. 19, 146–151 (1993).

    CAS  PubMed  Google Scholar 

  116. Rempel, S. A. et al. Cathepsin B expression and localization in glioma progression and invasion. Cancer Res. 54, 6027–6031 (1994).

    CAS  PubMed  Google Scholar 

  117. Sivaparvathi, M. et al. Overexpression and localization of cathepsin B during the progression of human gliomas. Clin. Exp. Metastasis 13, 49–56 (1995).

    CAS  PubMed  Google Scholar 

  118. Mikkelsen, T. et al. Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J. Neurosurg. 83, 285–290 (1995).

    CAS  PubMed  Google Scholar 

  119. Strojnik, T., Kos, J., Zidanik, B., Golouh, R. & Lah, T. Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin. Cancer Res. 5, 559–567 (1999). The authors showed that high expression levels of cathepsin B correlate with poor clinical outcome. The expression of cathepsin B by endothelial cells might be used to predict the survival of glioblastoma patients and, in addition, it indicates the involvement of cathepsin B in tumour-associated angiogenesis.

    CAS  PubMed  Google Scholar 

  120. Demchik, L. L., Sameni, M., Nelson, K., Mikkelsen, T. & Sloane, B. F. Cathepsin B and glioma invasion. Int. J. Dev. Neurosci. 17, 483–494 (1999).

    CAS  PubMed  Google Scholar 

  121. Mohanam, S. et al. Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20, 3665–3673 (2001). The authors showed that SNB19-stable clones expressing antisense cathepsin B cDNA had significant reductions in the levels of cathepsin B mRNA, enzyme activity and protein compared with controls. These cells had reduced invasiveness in vitro , and intracerebral injection of these antisense clones resulted in reduced tumour formation in nude mice.

    CAS  PubMed  Google Scholar 

  122. Turk, B., Turk, V. & Turk, D. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol. Chem. 378, 141–150 (1997).

    CAS  PubMed  Google Scholar 

  123. Sivaparvathi, M., McCutcheon, I., Sawaya, R., Nicolson, G. L. & Rao, J. S. Expression of cysteine protease inhibitors in human gliomas and meningiomas. Clin. Exp. Metastasis 14, 344–350 (1996).

    CAS  PubMed  Google Scholar 

  124. Strojnik, T. et al. Cathepsin B and its inhibitor stefin A in brain tumors. Pflugers Arch. 439, R122–R123 (2000).

    CAS  PubMed  Google Scholar 

  125. Konduri, S. D. et al. Modulation of cystatin C expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 21, 8705–8712 (2002).

    CAS  PubMed  Google Scholar 

  126. Tysnes, B. B. & Mahesparan, R. Biological mechanisms of glioma invasion and potential therapeutic targets. J. Neurooncol. 53, 129–147 (2001).

    CAS  PubMed  Google Scholar 

  127. Ossowski, L. & Aguirre-Ghiso, J. A. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr. Opin. Cell Biol. 12, 613–620 (2000).

    CAS  PubMed  Google Scholar 

  128. Goldbrunner, R. H., Bernstein, J. J. & Tonn, J. C. ECM-mediated glioma cell invasion. Microsc. Res. Tech. 43, 250–257 (1998).

    CAS  PubMed  Google Scholar 

  129. Rutka, J. T., Apodaca, G., Stern, R. & Rosenblum, M. The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155–170 (1988).

    CAS  PubMed  Google Scholar 

  130. Fryer, H. J., Kelly, G. M., Molinaro, L. & Hockfield, S. The high molecular weight Cat-301 chondroitin sulfate proteoglycan from brain is related to the large aggregating proteoglycan from cartilage, aggrecan. J. Biol. Chem. 267, 9874–9883 (1992).

    CAS  PubMed  Google Scholar 

  131. Aquino, D. A., Margolis, R. U. & Jargolis, R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain. J. Cell Biol. 99, 1130–1139 (1984).

    CAS  PubMed  Google Scholar 

  132. Margolis, R. K. & Margolis, R. U. in Complex Carbohydrates of Nervous Tissue (eds Margolis, R. K. & Margolis, R. U.) 45–73 (Plenum Press, New York, 1979).

    Google Scholar 

  133. Buckley, K. M. et al. A synaptic vesicle antigen is restricted to the junctional region of the presynaptic plasma membrane. Proc. Natl Acad. Sci. USA 80, 7342–7346 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bunge, R. P. & Bunge, M. B. Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci. 6, 499–505 (1983).

    Google Scholar 

  135. Rollins, B. J., Cathcart, M. K. & Culp, L. A. in The Glycoconjugate (ed. Harowitz, M. I.) 289–329 (Academic Press, New York, 1982).

    Google Scholar 

  136. Iozzo, B. P. Proteoglycans and neoplastic–mesenchymal cell interactions. Hum. Pathol. 15, 2–10 (1984).

    CAS  PubMed  Google Scholar 

  137. Toole, B. P., Goldberg, R. L., Chi-Rosso, G., Underhill, C. B. & Orkin, R. W. in The Role of Extracellular Matrix in Development (ed. Trelstad, R. L.) 43–66 (Liss, New York, 1984).

    Google Scholar 

  138. Burger, P. C., Heinz, E. R., Shibata, T. & Kleihues, P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J. Neurosurg. 68, 698–704 (1988).

    CAS  PubMed  Google Scholar 

  139. Chintala, S. K., Sawaya, R., Gokaslan, Z. L., Fuller, G. & Rao, J. S. Immmunohistochemical localization of extracellular matrix proteins in human glioma, both in vivo and in vitro. Cancer Lett. 101, 107–114 (1996).

    CAS  PubMed  Google Scholar 

  140. Ruosssslahti, E. & Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987).

    Google Scholar 

  141. Gladson, C. L. & Cheresh, D. A. Glioblastoma expression of vitronectin and the αvβ3 integrin. Adhesion mechanism for transformed glial cells. J. Clin. Invest. 88, 1924–1932 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Berens, M. E., Rief, M. D., Loo, M. A. & Giese, A. The role of extracellular matrix in human astrocytoma migration and proliferation studies in a microliter scale assay. Clin. Exp. Metastasis 12, 405–415 (1994).

    CAS  PubMed  Google Scholar 

  143. Tucker, R. P. The in situ localization of tenascin splice variants and thrombospondin 2 mRNA in the avian embryo. Development 117, 347–358 (1993).

    CAS  PubMed  Google Scholar 

  144. Wehrle-Haller, B., Koch, M., Baumgartner, S., Spring, J. & Chiquet, M. Nerve-dependent and -indepdent tenascin expression in the developing chick limb bud. Development 112, 627–637 (1991).

    CAS  PubMed  Google Scholar 

  145. Prieto, A. L., Edelman, G. M. & Crossin, K. L. Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc. Natl Acad. Sci. USA 90, 10154–10158 (1993). Shows that the third fibronectin type III repeat, which contains the RGD tripeptide, supports cell attachment and migration of gliomas, and interaction with many integrins mediates the binding of different cell types to chicken cytotactin. The use of RGD-containing peptides and well-characterized antibodies specific for integrins indicates that cell attachment to the third fibronectin type III repeat is mediated by at least two integrin receptors of the αv subtype.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yurchenco, P. D. & Schittny, J. C. Molecular architecture of basement membranes. FASEB J. 4, 1577–1590 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I appreciate the contribution of the members of my lab, S. Mohanam, S. Lakka and C. Gondi, for the preparation of this manuscript. I also thank S. Jasti for editorial review and K. Minter for technical support. This work was supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

CNS tumours

LocusLink

α3β1 integrin

α5β1 integrin

αvβ3 integrin

bFGF

caspase-9

cathepsin B

caveolin

CDKN2A

c-MYC

DR4

DR5

EGFR

ERK1

ERK2

HGF/SF

LRP

MMP1

MMP2

MMP3

MMP7

MMP8

MMP9

MMP10

MMP11

MMP13

MMP14

MMP15

MMP16

MMP17

MMP24

MMP25

MMP26

PAI1

PKCδ

PKCε

PKCζ

plasminogen

PTEN

SP1

SP3

TGF-α

Timp1

TIMP2

TIMP4

TRAIL

uPA

uPAR

vitronectin

Glossary

RETICULOENDOTHELIAL SYSTEM

A group of cells that have the ability to sequester organic and inorganic particles. Cells include macrophages, monocytes, reticular cells of the lymphatic system, endothelial cells of the spleen sinusoids, and microglia.

COMPUTED TOMOGRAPHY

(CT). As generated X-rays pass through different types of tissue, they are deflected or absorbed to different degrees. CT uses X-rays to obtain three-dimensional images by rotating an X-ray source around the subject and measuring the intensity of transmitted X-rays from different angles.

MAGNETIC RESONANCE IMAGING

(MRI). A powerful diagnostic imaging method that uses radiowaves in the presence of a magnetic field to extract information from certain atomic nuclei (most commonly, hydrogen). It is mainly used for producing anatomical images, but also gives information on the physico-chemical state of tissues, flow, diffusion, motion and, more recently, molecular targets.

INTEGRINS

A family of more than 20 heterodimeric cell-surface extracellular-matrix (ECM) receptors. They connect the structure of the ECM with the cytoskeleton and can transmit signalling information.

MATRIGEL

The extracellular matrix secreted by the Engelbrecht–Holm– Swarm mouse sarcoma cell line. It contains laminin, collagen IV, nidogen/entactin and proteoglycans, and so resembles the basement membrane.

BAX

(BCL2-associated X protein). A pro-apoptotic member of the BCL2 family.

K14–HPV16

A transgenic mouse strain that expresses human papillomavirus type 16 (HPV16) early-region genes, including the E6 and E7 oncogenes, under the control of the human keratin-14 promoter (K14), in basal keratinocytes. Invasive squamous carcinomas of the epidermis develop through characteristic stages.

RIP1–TAG2

A transgenic mouse strain that expresses the simian virus 40 (SV40) large T antigen (TAg) under the control of the rat insulin II promoter (RIP) in pancreatic-islet cells. Carcinomas develop in the pancreatic islets and progress through characteristic stages.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, J. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3, 489–501 (2003). https://doi.org/10.1038/nrc1121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing