Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New advances that enable identification of glioblastoma recurrence

Abstract

Postoperative adjuvant radiation therapy and temozolomide chemotherapy have become the standard care for newly diagnosed malignant gliomas. The efficacy of these therapies has led to an increase in pseudoprogression and radiation necrosis, both of which are treatment-related effects whose appearance on standard MRI with gadolinium-based contrast agents resembles that of tumor progression or recurrence. Accurate diagnosis of these post-treatment lesions as either tumor recurrence or treatment effects (pseudoprogression or radiation necrosis) is important to determine the patient's prognosis. Modern advancements with magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), and PET scans have shown promise for distinguishing tumor recurrence from treatment effects. Advances in radiographic techniques will become critically important with the emergence of new antiangiogenic therapies. Consequently, MRS, DWI, and PET need to be incorporated into routine post-treatment investigations to improve the specificity and sensitivity of distinguishing tumor recurrence from treatment effects. Further research will also be needed to develop improved algorithms that use these modalities, and to develop new modalities with even greater accuracy than those currently available.

Key Points

  • Temozolomide chemotherapy and radiotherapy have become the standard care for patients with malignant glioma

  • This therapeutic regimen has been associated with an increase in early, post-treatment, enhancing lesions on gadolinium-contrast MRI

  • These lesions are treatment effects, defined as either pseudoprogression (early radiographic changes) or radiation necrosis (later, subacute radiographic changes)

  • Pseudoprogression and radiation necrosis usually resolve spontaneously, although mass effects from radiation necrosis sometimes require surgical treatment; however, these changes are challenging to distinguish from tumor recurrence

  • Modern biologic and radiographic imaging techniques such as MRI, diffusion-weighted imaging, and magnetic resonance spectroscopy have shown potential in differentiating between tumor recurrence and radiation effects

  • Advances in radiographic and other imaging techniques used to detect tumors are needed; new antivascular therapies render standard contrast-enhanced MRI unreliable for assessing tumor recurrence

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of radiotherapy as postsurgical treatment of glioblastoma.
Figure 2: Sequence of events in radiation necrosis.
Figure 3: Histopathologic features of radiation necrosis.
Figure 4: Conventional T1 gadolinium-enhanced MRI appearance of radiation necrosis.
Figure 5: Appearance of bevacizumab-treated glioma on conventional MRI.
Figure 6: MRS images of glioma after radiotherapy.

Similar content being viewed by others

References

  1. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Brandes, A. A. et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 26, 2192–2197 (2008).

    Article  PubMed  Google Scholar 

  3. Mirimanoff, R. O. et al. Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J. Clin. Oncol. 24, 2563–2569 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Brandsma, D., Stalpers, L., Taal, W., Sminia, P. & van den Bent, M. J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 9, 453–461 (2008).

    Article  PubMed  Google Scholar 

  5. Chamberlain, M. C., Glantz, M. J., Chalmers, L., Van Horn, A. & Sloan, A. E. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J. Neurooncol. 82, 81–83 (2007).

    Article  PubMed  Google Scholar 

  6. de Wit, M. C., de Bruin, H. G., Eijkenboom, W., Sillevis Smitt, P. A. & van den Bent, M. J. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63, 535–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Zeng, Q. S. et al. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J. Neurooncol. 84, 63–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kumar, A. J. et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217, 377–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Mullins, M. E. et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am. J. Neuroradiol. 26, 1967–1972 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Zeng, Q. S., Li, C. F., Liu, H., Zhen, J. H. & Feng, D. C. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int. J. Radiat. Oncol. Biol. Phys. 68, 151–158 (2007).

    Article  PubMed  Google Scholar 

  11. Rock, J. P. et al. Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54, 1111–1117 (2004).

    Article  PubMed  Google Scholar 

  12. Kashimura, H., Inoue, T., Beppu, T., Ogasawara, K. & Ogawa, A. Diffusion tensor imaging for differentiation of recurrent brain tumor and radiation necrosis after radiotherapy—three case reports. Clin. Neurol. Neurosurg. 109, 106–110 (2007).

    Article  PubMed  Google Scholar 

  13. Rachinger, W. et al. Positron emission tomography with O-(2-18F)-fluoroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57, 505–511 (2005).

    Article  PubMed  Google Scholar 

  14. Herfarth, K. K., Gutwein, S. & Debus, J. Postoperative radiotherapy of astrocytomas. Semin. Surg. Oncol. 20, 13–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Nieder, C. et al. Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome? Strahlenther. Onkol. 180, 401–407 (2004).

    Article  PubMed  Google Scholar 

  16. Giglio, P. & Gilbert, M. R. Cerebral radiation necrosis. Neurologist 9, 180–188 (2003).

    Article  PubMed  Google Scholar 

  17. Ruben, J. D. et al. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 65, 499–508 (2006).

    Article  PubMed  Google Scholar 

  18. Bauman, G. S. et al. Reirradiation of primary CNS tumors. Int. J. Radiat. Oncol. Biol. Phys. 36, 433–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Floyd, N. S. et al. Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 58, 721–726 (2004).

    Article  PubMed  Google Scholar 

  20. Mayer, R. & Sminia, P. Reirradiation tolerance of the human brain. Int. J. Radiat. Oncol. Biol. Phys. 70, 1350–1360 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. McDermott, M. W., Sneed, P. K. & Gutin, P. H. Interstitial brachytherapy for malignant brain tumors. Semin. Surg. Oncol. 14, 79–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Soffietti, R., Sciolla, R., Giordana, M. T., Vasario, E. & Schiffer, D. Delayed adverse effects after irradiation of gliomas: clinicopathological analysis. J. Neurooncol. 3, 187–192 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Kong, D. S. et al. Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112, 2046–2051 (2008).

    Article  PubMed  Google Scholar 

  24. Perry, A. & Schmidt, R. E. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol. 111, 197–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Peca, C. et al. Early clinical and neuroradiological worsening after radiotherapy and concomitant temozolomide in patients with glioblastoma: tumor progression or radionecrosis? Clin. Neurol. Neurosurg. 111, 331–334 (2008).

    Article  PubMed  Google Scholar 

  26. Forsyth, P. A. et al. Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J. Neurosurg. 82, 436–444 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Levin, V. A. et al. Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int. J. Radiat. Oncol. Biol. Phys. 53, 58–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Wong, C. S. & Van der Kogel, A. J. Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol. Interv. 4, 273–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Brown, W. R. et al. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J. Neurol. Sci. 257, 67–71 (2007).

    Article  PubMed  Google Scholar 

  30. Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E. & Wheeler, K. T. Vascular damage after fractionated whole-brain irradiation in rats. Radiat. Res. 164, 662–668 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Y. Q., Chen, P., Haimovitz-Friedman, A., Reilly, R. M. & Wong, C. S. Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res. 63, 5950–5956 (2003).

    CAS  PubMed  Google Scholar 

  32. Tan, J., Geng, L., Yazlovitskaya, E. M. & Hallahan, D. E. Protein kinase B/Akt-dependent phosphorylation of glycogen synthase kinase-3β in irradiated vascular endothelium. Cancer Res. 66, 2320–2327 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Rodemann, H. P. & Blaese, M. A. Responses of normal cells to ionizing radiation. Semin. Radiat. Oncol. 17, 81–88 (2007).

    Article  PubMed  Google Scholar 

  34. Lin, T. et al. Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J. Biol. Chem. 275, 8657–8663 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Liao, W. C. et al. Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J. Biol. Chem. 274, 17908–17917 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Quarmby, S., Kumar, P. & Kumar, S. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte–endothelial cell interactions. Int. J. Cancer 82, 385–395 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Nordal, R. A., Nagy, A., Pintilie, M. & Wong, C. S. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin. Cancer Res. 10, 3342–3353 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hovinga, K. E. et al. Radiation-enhanced vascular endothelial growth factor (VEGF) secretion in glioblastoma multiforme cell lines—a clue to radioresistance? J. Neurooncol. 74, 99–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Gupta, V. K. et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 8, 47–54 (2002).

    Article  PubMed  Google Scholar 

  40. Stegh, A. H., Chin, L., Louis, D. N. & DePinho, R. A. What drives intense apoptosis resistance and propensity for necrosis in glioblastoma? A role for Bcl2L12 as a multifunctional cell death regulator. Cell Cycle 7, 2833–2839 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Griebel, M. et al. Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma. Med. Pediatr. Oncol. 19, 182–186 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Watne, K., Hager, B., Heier, M. & Hirschberg, H. Reversible edema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations. Acta Oncol. 29, 891–895 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Vredenburgh, J. J. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 13, 1253–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Bi-weekly temozolomide plus bevacizumab for adult patients with recurrent glioblastoma multiforme. Clinical Trials.gov: a service of the US NIH [online], (2009).

  47. Bevacizumab and temozolomide following radiation and chemotherapy for newly diagnosed glioblastoma multiforme. Clinical Trials.gov: a service of the US NIH [online], (2009).

  48. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wachsberger, P. R. et al. VEGF-Trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 67, 1526–1537 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Sathornsumetee, S. et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol. 26, 271–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dings, R. P. et al. Scheduling of radiation with angiogenesis inhibitors Anginex and Avastin improves therapeutic outcome via vessel normalization. Clin. Cancer Res. 13, 3395–3402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  54. Zhou, Q., Guo, P. & Gallo, J. M. Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin. Cancer Res. 14, 1540–1549 (2008).

    Article  PubMed  Google Scholar 

  55. Lai, A. et al. Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int. J. Radiat. Oncol. Biol. Phys. 71, 1372–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Du, R. et al. HIF-1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Norden, A. D. et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70, 779–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Kunkel, P. et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. 61, 6624–6628 (2001).

    CAS  PubMed  Google Scholar 

  59. Rubenstein, J. L. et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2, 306–314 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pope, W. B., Lai, A., Nghiemphu, P., Mischel, P. & Cloughesy, T. F. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66, 1258–1260 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Dietrich, J., Norden, A. D. & Wen, P. Y. Emerging anti-angiogenic treatments for gliomas—efficacy and safety issues. Curr. Opin. Neurol. 21, 736–744 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Bruehlmeier, M., Roelcke, U., Schubiger, P. A. & Ametamey, S. M. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J. Nucl. Med. 45, 1851–1859 (2004).

    PubMed  Google Scholar 

  63. McPherson, C. M. & Warnick, R. E. Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J. Neurooncol. 68, 41–47 (2004).

    Article  PubMed  Google Scholar 

  64. Chan, Y. L., Yeung, D. K., Leung, S. F. & Chan, P. N. Diffusion-weighted magnetic resonance imaging in radiation-induced cerebral necrosis. Apparent diffusion coefficient in lesion components. J. Comput. Assist. Tomogr. 27, 674–680 (2003).

    Article  PubMed  Google Scholar 

  65. Hein, P. A., Eskey, C. J., Dunn, J. F. & Hug, E. B. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am. J. Neuroradiol. 25, 201–209 (2004).

    PubMed  PubMed Central  Google Scholar 

  66. Asao, C. et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am. J. Neuroradiol. 26, 1455–1460 (2005).

    PubMed  PubMed Central  Google Scholar 

  67. Verma, R. et al. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad. Radiol. 15, 966–977 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schlemmer, H. P. et al. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am. J. Neuroradiol. 22, 1316–1324 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rabinov, J. D. et al. In vivo 3 T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225, 871–879 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Schlemmer, H. P. et al. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 44, 216–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Weybright, P. et al. Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am. J. Roentgenol. 185, 1471–1476 (2005).

    Article  PubMed  Google Scholar 

  72. Yang, D. et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44, 656–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Nelson, S. J. Multivoxel magnetic resonance spectroscopy of brain tumors. Mol. Cancer Ther. 2, 497–507 (2003).

    CAS  PubMed  Google Scholar 

  74. McKnight, T. R. et al. Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J. Neurosurg. 97, 794–802 (2002).

    Article  PubMed  Google Scholar 

  75. Gonen, O., Gruber, S., Li, B. S., Mlynarik, V. & Moser, E. Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am. J. Neuroradiol. 22, 1727–1731 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Inglese, M. et al. Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology 63, 170–172 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Tsuyuguchi, N. et al. Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery in malignant glioma. Ann. Nucl. Med. 18, 291–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Terakawa, Y. et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J. Nucl. Med. 49, 694–699 (2008).

    Article  PubMed  Google Scholar 

  79. Floeth, F. W., Wittsack, H. J., Engelbrecht, V. & Weber, F. Comparative follow-up of enhancement phenomena with MRI and proton MR spectroscopic imaging after intralesional immunotherapy in glioblastoma—report of two exceptional cases. Zentralbl. Neurochir. 63, 23–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Brandes, A. A. et al. Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: phase II study from Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br. J. Cancer 95, 1155–1160 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gonzalez, J., Kumar, A. J., Conrad, C. A. & Levin, V. A. Effect of bevacizumab on radiation necrosis of the brain. Int. J. Radiat. Oncol. Biol. Phys. 67, 323–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Torcuator, R. et al. Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J. Neurooncol. 94, 63–68 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the editorial assistance with this manuscript provided by N. Huh. I. Yang, the first author, was partially supported by a University of California, San Francisco Clinical and Translational Scientist Training Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Aghi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, I., Aghi, M. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol 6, 648–657 (2009). https://doi.org/10.1038/nrclinonc.2009.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing