Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Functional neuroimaging of the vegetative state

Abstract

A number of recent studies have demonstrated a role for state-of-the-art neuroimaging methods in the assessment of patients in the vegetative state and other so-called 'disorders of consciousness'. In several cases, functional MRI has been used to show that aspects of speech perception, emotional processing, language comprehension and even conscious awareness might be retained in some patients who behaviourally meet all of the criteria that define the vegetative state. This work has profound implications for clinical care, diagnosis, prognosis and medical–legal decision making (relating to the prolongation, or otherwise, of life after severe brain injury), as well as for more basic scientific questions about the nature of consciousness and the neural representation of our own thoughts and intentions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A proposed hierarchical approach to the use of fMRI to assess residual cognitive function in patients in the vegetative state.
Figure 2: Residual language function in patients diagnosed as either vegetative or minimally conscious.
Figure 3: Changes in brain activity when one imagines performing a task.
Figure 4: Conscious responses to stimuli in a patient who fulfilled all the clinical criteria defining the vegetative state.

References

  1. Plum, F. & Posner, J. B. The Diagnosis of Stupor and Coma 3rd edn (Wiley, New York, 1983).

    Google Scholar 

  2. Jennett, B. & Plum, F. Persistent vegetative state after brain damage. Lancet 1, 734–737 (1972).

    Article  CAS  Google Scholar 

  3. The Multi-Society Task Force on the Persistent Vegetative State. Medical aspects of a persistent vegetative state. N. Engl. J. Med. 330, 499–508, 572–579 (1994).

  4. Royal College of Physicians. The Vegetative State: Guidance on Diagnosis and Management (Royal College of Physicians, London, 1996).

  5. Laureys, S., Perrion, F. & Bredart, S. Self-consciousness in non-communicative patients. Conscious. Cogn. 16, 722–741 (2007).

    Article  Google Scholar 

  6. Gill-Thwaites, H. & Munday, R. The Sensory Modality Assessment and Rehabilitation Technique (SMART): a valid and reliable assessment for vegetative state and minimally conscious state patients. Brain Inj. 18, 1255–1269 (2004).

    Article  CAS  Google Scholar 

  7. Giacino, J. T., Kalmar, K. & Whyte, J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85, 2020–2029 (2004).

    Article  Google Scholar 

  8. Andrews, K., Murphy, L., Munday, R. & Littlewood, C. Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313, 13–16 (1996).

    Article  CAS  Google Scholar 

  9. Childs, N. L., Mercer, W. N. & Childs, H. W. Accuracy of diagnosis of persistent vegetative state. Neurology 43, 1465–1467 (1993).

    Article  CAS  Google Scholar 

  10. Laureys, S. et al. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 9, 377–382 (1999).

    Article  CAS  Google Scholar 

  11. Laureys, S. et al. Cerebral metabolism during vegetative state and after recovery to consciousness. J. Neurol. Neurosurg. Psychiatry 67, 121–122 (1999).

    Article  CAS  Google Scholar 

  12. Schiff, N. D. et al. Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 125, 1210–1234 (2002).

    Article  Google Scholar 

  13. Owen, A. M., Epstein, R. & Johnsrude, I. S. in Functional Magnetic Resonance Imaging. An Introduction to Methods (eds Jezzard, P., Mathews, P. M. & Smith, S. M.) 311–328 (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  14. de Jong, B., Willemsen, A. T. & Paans, A. M. Regional cerebral blood flow changes related to affective speech presentation in persistent vegetative state. Clin. Neurol. Neurosurg. 99, 213–216 (1997).

    Article  CAS  Google Scholar 

  15. Menon, D. K. et al. Cortical processing in persistent vegetative state. Lancet 352, 200 (1998).

    Article  CAS  Google Scholar 

  16. Laureys, S. et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 17, 732–741 (2002).

    Article  CAS  Google Scholar 

  17. Di, H. B. et al. Cerebral response to patient's own name in the vegetative and minimally conscious states. Neurology 68, 895–899 (2007).

    Article  CAS  Google Scholar 

  18. Bekinschtein, T. et al. Emotion processing in the minimally conscious state. J. Neurol. Neurosurg. Psychiatry 75, 788 (2004).

    Article  CAS  Google Scholar 

  19. Poldrack, R. A. Can cognitive processes be inferred from neuroimaging data? Trends Cogn. Sci. 10, 59–63 (2006).

    Article  Google Scholar 

  20. Christoff, K. & Owen, A. M. Improving reverse neuroimaging inference: cognitive domain versus cognitive complexity. Trends Cogn. Sci. 10, 352–353 (2006).

    Article  Google Scholar 

  21. Owen, A. M. et al. in The Boundaries of Consciousness: Neurobiology and Neuropathology (Progress in Brain Research) (ed. Laureys, S.) 461–476 (Elsevier, London, 2005).

    Google Scholar 

  22. Owen, A. M. et al. Residual auditory function in persistent vegetative state: a combined PET and fMRI study. Neuropsychol. Rehabil. 15, 290–306 (2005).

    Article  Google Scholar 

  23. Laureys, S., Owen, A. M. & Schiff, N. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 3, 537–546 (2004).

    Article  Google Scholar 

  24. Rodd, J. M. Davis, M. H. & Johnsrude, I. S. The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cereb. Cortex 15, 1261–1269 (2005).

    Article  Google Scholar 

  25. Coleman, M. R. et al. Do vegetative patients retain aspects of language? Evidence from fMRI. Brain 130, 2494–2507 (2007).

    Article  Google Scholar 

  26. Haynes, J. D. et al. Hidden intentions in the human brain. Curr. Biol. 17, 323–328 (2007).

    Article  CAS  Google Scholar 

  27. Weiskopf, N. et al. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51, 966–970 (2004).

    Article  Google Scholar 

  28. Owen, A. M. et al. Detecting awareness in the vegetative state. Science 313, 1402 (2006).

    Article  CAS  Google Scholar 

  29. Boly, M. et al. When thoughts become actions: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36, 979–992, 2007.

    Article  CAS  Google Scholar 

  30. Jeannerod, M. & Frak, V. Mental imaging of motor activity in humans. Curr. Opin. Neurobiol. 9, 735–739 (1999).

    Article  CAS  Google Scholar 

  31. Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographical learning in man. Cereb. Cortex 6, 823–829 (1996).

    Article  CAS  Google Scholar 

  32. Ghaem, O. et al. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport 8, 739–744 (1997).

    Article  CAS  Google Scholar 

  33. Owen, A. M. et al. Response to Comments on “Detecting awareness in the vegetative state”. Science. 315, 1221c (2007).

    Article  Google Scholar 

  34. Schacter, D. L. in Memory Systems (eds Schacter, D. L. & Tulving, E.) 233–268 (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  35. Davis, M. H. et al. Dissociating speech perception and comprehension at reduced levels of awareness. Proc. Natl Acad. Sci. USA 104, 16032–16037 (2007).

    Article  CAS  Google Scholar 

  36. Bonebakker, A. et al. in Memory and Awareness in Anaesthesia (eds Bonke, B., Bovill, J. G. W. & Moerman, N.) 101–109 (Swets and Zeitlinger, Lisse, 1996).

    Google Scholar 

  37. Dehaene, S. et al. Imaging unconscious semantic priming. Nature 395, 597–600 (1998).

    Article  CAS  Google Scholar 

  38. Nachev, P. & Husain, M. Comment on “Detecting awareness in the vegetative state”. Science 315, 1221 (2007).

    Article  CAS  Google Scholar 

  39. Greenberg, D. L. Comment on “Detecting awareness in the vegetative state”. Science 313, 1402 (2007).

    Google Scholar 

  40. Naccache, L. Is she conscious? Science 313, 1395–1396 (2006).

    Article  CAS  Google Scholar 

  41. Smith, K. Looking for hidden signs of consciousness Nature 446, 355 (2007).

    Article  CAS  Google Scholar 

  42. Editorial. Flickers of consciousness. Nature 443, 121–122 (2006).

  43. Groopman, J. Silent minds. The New Yorker 38–43 (15 Oct 2007).

    Google Scholar 

  44. Giacino, J. T. & Smart, C. M. Recent advances in behavioural assessment of individuals with disorders of consciousness. Curr. Opin. Neurol. 20, 614–619 (2007).

    Article  Google Scholar 

  45. Schiff, N. D. et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448, 600–603 (2007).

    Article  CAS  Google Scholar 

  46. Fins, J. J. & Schiff, N. D. Shades of gray: new insights into the vegetative state. Hastings Cent. Rep. 36, 8 (2006).

    Article  Google Scholar 

  47. Owen, A. M. & Coleman, M. R. Functional MRI in disorders of consciousness: advantages and limitations. Curr. Opin. Neurol. 20, 632–637 (2007).

    Article  Google Scholar 

  48. Owen, A. M. et al. Using functional magnetic resonance imaging to detect covert awareness in the vegetative state. Arch. Neurol. 64, 1098–1102 (2007).

    Article  Google Scholar 

  49. Koch, C. The Quest for Consciousness: a Neurobiological Approach (Roberts and Co., 2007).

    Google Scholar 

  50. Giacino, J. T. et al. The minimally conscious state: definition and diagnostic criteria. Neurology 58, 349–353 (2002).

    Article  Google Scholar 

  51. Kinney, H. C. & Samuels, M. A. Neuropathology of the persistent vegetative state. A review. J. Neuropathol. Exp. Neurol. 53, 548–558 (1994).

    Article  CAS  Google Scholar 

  52. Royal College of Physicians. A Code of Practice for the Diagnosis of Brainstem Death (Royal College of Physicians, London, 1998).

  53. Laureys, S. Death, unconsciousness and the brain. Nature Rev. Neurosci. 6, 899–909 (2005).

    Article  CAS  Google Scholar 

  54. Tsubokawa, T. et al. Deep brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj. 4, 315–327 (1990).

    Article  CAS  Google Scholar 

  55. Cohadon, F. & Richer, E. Deep cerebral stimulation in patients with post-traumatic vegetative state: 25 cases. Neurochirurgie 39, 281–292 (1993).

    CAS  PubMed  Google Scholar 

  56. Yamamoto, T. & Katayama, Y. Deep brain stimulation therapy for the vegetative state. Neuropsychol. Rehabil. 15, 406–413 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary information S1 (Box)

Notable recent cases of vegetative state (PDF 147 kb)

Related links

Related links

FURTHER INFORMATION

Adrian M. Owen's homepage

Cambridge Impaired Consciousness Research Group homepage

Glossary

Classifier

A mathematical algorithm used to categorize data into one of a number of groups or classes. Where imaging data is concerned, a classifier is often used to identify activation patterns and assign these to particular 'mental states'.

Coma

An acute state of unconsciousness immediately after a brain injury, during which the patient exhibits no evidence of arousal or awareness.

Event-related fMRI

A technique that measures the brain's haemodynamic response to events (for example, stimuli) occurring at specific moments in time.

Locked-in syndrome

A condition in which an individual is fully conscious but unable to move or speak due to quadriplegia and anarthria.

Masked information

Stimuli that are presented in such a way that they are not consciously perceived.

Minimally conscious state

A condition in which an individual demonstrates wakefulness and inconsistent but reproducible evidence of awareness of self or environment.

PET activation studies

Studies that use radioactive tracers to measure blood flow or metabolism in the brain in response to a particular stimulus or task.

Vegetative state

A condition of wakefulness without awareness. An individual in the vegetative state might open their eyes and show sleep–wake cycles, but shows no purposeful response to stimulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, A., Coleman, M. Functional neuroimaging of the vegetative state. Nat Rev Neurosci 9, 235–243 (2008). https://doi.org/10.1038/nrn2330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing