Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The problem of functional localization in the human brain

Abstract

Functional imaging gives us increasingly detailed information about the location of brain activity. To use this information, we need a clear conception of the meaning of location data. Here, we review methods for reporting location in functional imaging and discuss the problems that arise from the great variability in brain anatomy between individuals. These problems cause uncertainty in localization, which limits the effective resolution of functional imaging, especially for brain areas involved in higher cognitive function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of image processing.
Figure 2: Examples of activation maps superimposed on the subject's structural image.

Similar content being viewed by others

References

  1. Worsley, K. J. An overview and some new developments in the statistical analysis of PET and fMRI data. Hum. Brain Mapp. 5, 254–258 (1997).

    Article  CAS  Google Scholar 

  2. Grabowski, T. J. et al. Reliability of PET activation across statistical methods, subject groups, and sample sizes. Neuroimage 4, 23–46 (1996).

    Article  CAS  Google Scholar 

  3. Brodmann, K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues (Barth, Leipzig, 1909).

    Google Scholar 

  4. von Economo, C. & Koskinas, G. N. Die cytoarchitectonic der Hirnrinde des erwachsenen Menschen (Springer, Berlin, 1925).

    Google Scholar 

  5. Sarkissov, S. A. et al. (eds) Atlas of the Cytoarchitectonics of the Human Cerebral Cortex (Medgiz, Moscow, 1955).

    Google Scholar 

  6. Roland, P. E. & Zilles, K. Brain atlases — a new research tool. Trends Neurosci. 17, 458–467 (1994).

    Article  CAS  Google Scholar 

  7. Owen, A. M. The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Exp. Brain Res. 133, 33–43 (2000).

    Article  CAS  Google Scholar 

  8. Fischl, B. et al. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).

    Article  CAS  Google Scholar 

  9. Ono, M., Kubik, S. & Abernathey, C. D. Atlas of the Cerebral Sulci (Thieme Medical, New York, 1990).

    Google Scholar 

  10. Tzourio-Mazoyer, N. et al. in Handbook of Medical Imaging: Processing and Analysis (ed. Bankman, I.) 449–463 (Academic, San Diego, 2000).

    Book  Google Scholar 

  11. Watson, J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 (1993).

    Article  CAS  Google Scholar 

  12. Kotter, R. et al. Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat. Embryol. (Berl.) 204, 333–350 (2001).

    Article  CAS  Google Scholar 

  13. Roland, P. E. & Zilles, K. Structural divisions and functional fields in the human cerebral cortex. Brain Res. Brain Res. Rev. 26, 87–105 (1998).

    Article  CAS  Google Scholar 

  14. Morel, A., Garraghty, P. E. & Kaas, J. H. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J. Comp. Neurol. 335, 437–459 (1993).

    Article  CAS  Google Scholar 

  15. Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).

    Article  CAS  Google Scholar 

  16. Rivier, F. & Clarke, S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6, 288–304 (1997).

    Article  CAS  Google Scholar 

  17. Morosan, P. et al. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13, 684–701 (2001).

    Article  CAS  Google Scholar 

  18. Wallace, M. N., Johnston, P. W. & Palmer, A. R. Histochemical identification of cortical areas in the auditory region of the human brain. Exp. Brain Res. (in the press).

  19. Amunts, K. & Zilles, K. Advances in cytoarchitectonic mapping of the human cerebral cortex. Neuroimaging Clin. N. Am. 11, 151–169 (2001).

    CAS  PubMed  Google Scholar 

  20. Kaas, J. H. & Collins, C. E. The organization of sensory cortex. Curr. Opin. Neurobiol. 11, 498–504 (2001).

    Article  CAS  Google Scholar 

  21. Amunts, K. et al. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).

    Article  CAS  Google Scholar 

  22. Rademacher, J. et al. Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13, 669–683 (2001).

    Article  CAS  Google Scholar 

  23. Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb. Cortex 5, 323–337 (1995).

    Article  CAS  Google Scholar 

  24. Gilissen, E. & Zilles, K. The calcarine sulcus as an estimate of the total volume of human striate cortex: a morphometric study of reliability and intersubject variability. J. Hirnforsch. 37, 57–66 (1996).

    CAS  PubMed  Google Scholar 

  25. Rademacher, J. et al. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex 3, 313–329 (1993).

    Article  CAS  Google Scholar 

  26. Penhune, V. B. et al. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 (1996).

    Article  CAS  Google Scholar 

  27. Hall, D. A. et al. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 12, 140–149 (2002).

    Article  Google Scholar 

  28. Lancaster, J. L. et al. Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000).

    Article  CAS  Google Scholar 

  29. Schormann, T. & Zilles, K. Three-dimensional linear and nonlinear transformations: an integration of light microscopical and MRI data. Hum. Brain Mapp. 6, 339–347 (1998).

    Article  CAS  Google Scholar 

  30. Geyer, S., Schleicher, A. & Zilles, K. The somatosensory cortex of human: cytoarchitecture and regional distributions of receptor-binding sites. Neuroimage 6, 27–45 (1997).

    Article  CAS  Google Scholar 

  31. Geyer, S., Schleicher, A. & Zilles, K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 10, 63–83 (1999).

    Article  CAS  Google Scholar 

  32. Geyer, S. et al. Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage 11, 684–696 (2000).

    Article  CAS  Google Scholar 

  33. Rademacher, J. et al. Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124, 2232–2258 (2001).

    Article  CAS  Google Scholar 

  34. Amunts, K. et al. Brodmann's areas 17 and 18 brought into stereotaxic space — where and how variable? Neuroimage 11, 66–84 (2000).

    Article  CAS  Google Scholar 

  35. Roland, P. E. et al. Cytoarchitectonic maps of the human brain in standard anatomical space. Hum. Brain Mapp. 5, 222–227 (1997).

    Article  CAS  Google Scholar 

  36. Binkofski, F. et al. Broca's region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum. Brain Mapp. 11, 273–285 (2000).

    Article  CAS  Google Scholar 

  37. Bodegard, A. et al. Object shape differences reflected by somatosensory cortical activation. J. Neurosci. 20, RC51 (2000).

    Article  CAS  Google Scholar 

  38. Johnsrude, I. et al. Cytoarchitectonic region-of-interest analysis of auditory imaging data. Neuroimage 13, S897 (2001).

    Article  Google Scholar 

  39. Wieshmann, U. C. et al. Combined functional magnetic resonance imaging and diffusion tensor imaging demonstrate widespread modified organisation in malformation of cortical development. J. Neurol. Neurosurg. Psychiatry 70, 521–523 (2001).

    Article  CAS  Google Scholar 

  40. Mori, S. et al. In vivo visualization of human neural pathways by magnetic resonance imaging. Ann. Neurol. 47, 412–414 (2000).

    Article  CAS  Google Scholar 

  41. Conturo, T. E. et al. Tracking neuronal fiber pathways in the living human brain. Proc. Natl Acad. Sci. USA 96, 10422–10427 (1999).

    Article  CAS  Google Scholar 

  42. Duong, T. Q. et al. Spatiotemporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response. Magn. Reson. Med. 44, 231–242 (2000).

    Article  CAS  Google Scholar 

  43. Yoshiura, T. et al. Heschl and superior temporal gyri: low signal intensity of the cortex on T2-weighted MR images of the normal brain. Radiology 214, 217–221 (2000).

    Article  CAS  Google Scholar 

  44. Goodyear, B. G. & Menon, R. S. Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum. Brain Mapp. 14, 210–217 (2001).

    Article  CAS  Google Scholar 

  45. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  46. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  Google Scholar 

  47. Downing, P. E. et al. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001).

    Article  CAS  Google Scholar 

  48. Epstein, R. et al. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).

    Article  CAS  Google Scholar 

  49. Thompson, P. M. & Toga, A. W. in Handbook of Medical Imaging: Processing and Analysis (ed. Bankman, I.) 569–600 (Academic, San Diego, 2000).

    Book  Google Scholar 

  50. Woods, R. P. et al. Automated image registration: II. Intersubject validation of linear and nonlinear models. J. Comput. Assist. Tomogr. 22, 153–165 (1998).

    Article  CAS  Google Scholar 

  51. Ashburner, J. & Friston, K. J. Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7, 254–266 (1999).

    Article  CAS  Google Scholar 

  52. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  CAS  Google Scholar 

  53. Thompson, P. M. et al. Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain. Hum. Brain Mapp. 9, 81–92 (2000).

    Article  CAS  Google Scholar 

  54. Jezzard, P. & Clare, S. Sources of distortion in functional MRI data. Hum. Brain Mapp. 8, 80–85 (1999).

    Article  CAS  Google Scholar 

  55. Woods, R. D. in Handbook of Medical Imaging: Processing and Analysis (ed. Bankman, I.) 491–497 (Academic, San Diego, 2000).

    Book  Google Scholar 

  56. Fox, P. T., Parsons, L. M. & Lancaster, J. L. Beyond the single study: function/location metanalysis in cognitive neuroimaging. Curr. Opin. Neurobiol. 8, 178–187 (1998).

    Article  CAS  Google Scholar 

  57. Brett, M., Lancaster, J. & Christoff, K. Using the MNI brain with the Talairach atlas. Neuroimage 13, S85 (2001).

    Article  Google Scholar 

  58. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  Google Scholar 

  59. D'Esposito, M., Postle, B. R. & Rypma, B. Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp. Brain Res. 133, 3–11 (2000).

    Article  CAS  Google Scholar 

  60. Petersson, K. M. et al. Statistical limitations in functional neuroimaging II. Signal detection and statistical inference. Phil. Trans. R. Soc. Lond. B 354, 1261–1281 (1999).

    Article  CAS  Google Scholar 

  61. Friston, K. J. et al. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4, 223–235 (1996).

    Article  CAS  Google Scholar 

  62. Van Horn, J. D. et al. Mapping voxel-based statistical power on parametric images. Neuroimage 7, 97–107 (1998).

    Article  CAS  Google Scholar 

  63. Andreasen, N. C. et al. Sample size and statistical power in [15O]H2O studies of human cognition. J. Cereb. Blood Flow Metab. 16, 804–816 (1996).

    Article  CAS  Google Scholar 

  64. Christoff, K. & Gabrielli, J. D. E. The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28, 168–186 (2000).

    Google Scholar 

  65. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988).

    Google Scholar 

  66. Collins, D. L. 3D Model-Based Segmentation of Individual Brain Structures from Magnetic Resonance Imaging Data. Thesis, McGill Univ., Canada (1994).

    Google Scholar 

  67. Evans, A. C. et al. Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1, 43–53 (1992).

    Article  CAS  Google Scholar 

  68. Evans, A. C., Collins, D. L. & Milner, B. An MRI-based stereotactic atlas from 250 young normal subjects. Soc. Neurosci. Abstr. 18, 408 (1992).

    Google Scholar 

  69. Collins, D. L. et al. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).

    Article  CAS  Google Scholar 

  70. Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to T. Hackett and M. Petrides for helpful discussions on cytoarchitecture, and to J. Ashburner, S. Baxendale, D. Bor, J. Collins, L. Collins, R. Cools, M. Davis, G. DiGirolamo, J. Duncan, A. Gazanfar, A. Lawrence and T. Marcel for comments on earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Brett.

Related links

Related links

FURTHER INFORMATION

brain imaging: localization of brain functions

brain imaging: observing ongoing neural activity

magnetic resonance imaging

 MIT Encyclopedia of Cognitive Sciences

magnetic resonance imaging

positron emission tomography

 MRC Cognition and Brain Sciences Unit

SPM99

FSL

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brett, M., Johnsrude, I. & Owen, A. The problem of functional localization in the human brain. Nat Rev Neurosci 3, 243–249 (2002). https://doi.org/10.1038/nrn756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing