Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiangiogenic therapies for high-grade glioma

Abstract

High-grade gliomas (HGGs) are vascular tumors that represent attractive targets for antiangiogenic therapies. In this Review, we present the rationale and clinical trial evidence for targeting angiogenesis in HGGs, focusing predominantly on agents that target vascular endothelial growth factor (VEGF) and its receptors. Bevacizumab, a humanized monoclonal antibody against VEGF, was recently approved by the FDA for treatment of recurrent glioblastoma. Bevacizumab prolongs progression-free survival and controls peritumoral edema, but its effects on overall survival remain to be determined. Other inhibitors of VEGF, VEGF receptors and other proangiogenic signaling pathways are being evaluated. Antiangiogenic therapies are well tolerated, although potentially serious adverse events can occasionally occur, and resistance to antiangiogenic therapy inevitably develops. Mechanisms of resistance include upregulation of alternative proangiogenic pathways, and increased perivascular tumor growth. Tumor progression on antiangiogenic agents is a challenging problem for which no effective salvage therapy has been identified. Combining these agents with radiation therapy, cytotoxic chemotherapy, other targeted molecular agents, or anti-invasion therapies could be helpful. The international Response Assessment in Neuro-Oncology Working Group has developed consensus treatment response criteria for HGG that account for the complex effects of antiangiogenic drugs.

Key Points

  • Bevacizumab, a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), was recently approved by the FDA for treatment of recurrent glioblastoma

  • Various drugs that inhibit VEGF, VEGF receptors or other proangiogenic signaling pathways are being evaluated in clinical trials

  • Bevacizumab and other antiangiogenic therapies are well tolerated by most patients, although potentially serious adverse events, such as hemorrhage or venous thromboembolism, occasionally occur

  • Resistance to antiangiogenic drugs inevitably develops in patients with high-grade glioma

  • Tumor progression on antiangiogenic agents might be delayed by combining these agents with radiation therapy, cytotoxic drugs, other targeted molecular agents, or anti-invasion therapies

  • The optimal manner in which to evaluate response and progression to antiangiogenic therapies has yet to be established

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angiogenic signaling molecules representing potential therapeutic targets in high-grade glioma.
Figure 2: Mechanisms of resistance to antiangiogenic therapy in high-grade gliomas.
Figure 3: Non-enhancing tumor progression in a patient with high-grade glioma treated with bevacizumab.

Similar content being viewed by others

References

  1. CBTRUS: Statistical report: primary brain tumors in the United States, 2000–2004 (Central Brain Tumor Registry of the United States, 2008).

  2. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    CAS  PubMed  Google Scholar 

  3. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    CAS  PubMed  Google Scholar 

  4. Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10, 459–466 (2009).

    CAS  PubMed  Google Scholar 

  5. Prados, M. D. et al. Highly anaplastic astrocytoma: a review of 357 patients treated between 1977 and 1989. Int. J. Radiat. Oncol. Biol. Phys. 23, 3–8 (1992).

    CAS  PubMed  Google Scholar 

  6. Prados, M. D. et al. Phase III randomized study of radiotherapy plus procarbazine, lomustine, and vincristine with or without BUdR for treatment of anaplastic astrocytoma: final report of RTOG 9404. Int. J. Radiat. Oncol. Biol. Phys. 58, 1147–1152 (2004).

    CAS  PubMed  Google Scholar 

  7. van den Bent, M. J. et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J. Clin. Oncol. 24, 2715–2722 (2006).

    CAS  PubMed  Google Scholar 

  8. Wong, E. T. et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J. Clin. Oncol. 17, 2572–2578 (1999).

    CAS  PubMed  Google Scholar 

  9. Yung, W. et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br. J. Cancer 83, 588–593 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yung, W. K. et al. Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. J. Clin. Oncol. 17, 2762–2771 (1999).

    CAS  PubMed  Google Scholar 

  11. Folkman, J. Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006).

    CAS  PubMed  Google Scholar 

  12. Ferrara, N. & Kerbel, R. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005).

    CAS  PubMed  Google Scholar 

  13. Cloughesy, T. F. et al. A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM). J. Clin. Oncol. 26 (May 20 Suppl.), abstract 2010b (2008).

    Google Scholar 

  14. Guiu, S. et al. Bevacizumab/irinotecan. An active treatment for recurrent high grade gliomas: preliminary results of an ANOCEF Multicenter Study [French]. Rev. Neurol. (Paris) 164, 588–594 (2008).

    CAS  Google Scholar 

  15. Norden, A. D. et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70, 779–787 (2008).

    CAS  PubMed  Google Scholar 

  16. Pope, W. B., Lai, A., Nghiemphu, P., Mischel, P. & Cloughesy, T. F. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66, 1258–1260 (2006).

    CAS  PubMed  Google Scholar 

  17. Stark-Vance, V. Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma [abstract 342]. Neuro-Oncology 7, 369 (2005).

    Google Scholar 

  18. Vredenburgh, J. J. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 13, 1253–1259 (2007).

    CAS  PubMed  Google Scholar 

  19. Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729 (2007).

    CAS  PubMed  Google Scholar 

  20. Kreisl, T. N. et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745 (2009).

    CAS  PubMed  Google Scholar 

  21. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8, 610–622 (2007).

    CAS  PubMed  Google Scholar 

  23. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  24. Plate, K., Breier, G., Weich, H. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    CAS  PubMed  Google Scholar 

  25. Stefanik, D. F., Rizkalla, L. R., Soi, A., Goldblatt, S. A. & Rizkalla, W. M. Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res. 51, 5760–5765 (1991).

    CAS  PubMed  Google Scholar 

  26. Reiss, Y., Machein, M. & Plate, K. The role of angiopoietins during angiogenesis in gliomas. Brain Pathol. 15, 311–317 (2005).

    CAS  PubMed  Google Scholar 

  27. Shih, A. H. & Holland, E. C. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett. 232, 139–147 (2006).

    CAS  PubMed  Google Scholar 

  28. Charalambous, C. et al. Interleukin-8 differentially regulates migration of tumor-associated and normal human brain endothelial cells. Cancer Res. 65, 10347–10354 (2005).

    CAS  PubMed  Google Scholar 

  29. Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmidt, N. O. et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer 84, 10–18 (1999).

    CAS  PubMed  Google Scholar 

  31. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    CAS  PubMed  Google Scholar 

  32. Soker, S., Fidder, H., Neufeld, G. & Klagsbrun, M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem. 271, 5761–5767 (1996).

    CAS  PubMed  Google Scholar 

  33. Hu, B. et al. Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 26, 5577–5586 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    CAS  PubMed  Google Scholar 

  35. Oliner, J. et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6, 507–516 (2004).

    CAS  PubMed  Google Scholar 

  36. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    CAS  PubMed  Google Scholar 

  38. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    CAS  PubMed  Google Scholar 

  39. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  40. Rich, J. N. Cancer stem cells in radiation resistance. Cancer Res. 67, 8980–8984 (2007).

    CAS  PubMed  Google Scholar 

  41. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    CAS  PubMed  Google Scholar 

  42. Gilbertson, R. J. & Rich, J. N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7, 733–736 (2007).

    CAS  PubMed  Google Scholar 

  43. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    CAS  PubMed  Google Scholar 

  44. Folkins, C. et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 67, 3560–3564 (2007).

    CAS  PubMed  Google Scholar 

  45. Eyler, C. E. & Rich, J. N. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol. 26, 2839–2845 (2008).

    CAS  PubMed  Google Scholar 

  46. Brada, M. et al. Multicenter phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann. Oncol. 12, 259–266 (2001).

    CAS  PubMed  Google Scholar 

  47. Brandes, A. A. et al. Temozolomide as a second-line systemic regimen in recurrent high-grade glioma: a phase II study. Ann. Oncol. 12, 255–257 (2001).

    CAS  PubMed  Google Scholar 

  48. Yung, W. K. et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br. J. Cancer 83, 588–593 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Narayana, A. et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J. Neurosurg. 110, 173–180 (2009).

    PubMed  Google Scholar 

  50. Nghiemphu, P. L. et al. Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72, 1217–1222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Poulsen, H. S. et al. Bevacizumab plus irinotecan in the treatment patients with progressive recurrent malignant brain tumours. Acta Oncol. 48, 52–58 (2009).

    CAS  PubMed  Google Scholar 

  52. Zuniga, R. M. et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J. Neurooncol. 91, 329–336 (2009).

    CAS  PubMed  Google Scholar 

  53. Wagner, S. A. et al. Update on survival from the original phase II trial of bevacizumab and irinotecan in recurrent malignant gliomas. J. Clin. Oncol. 26 (May 20 Suppl.), abstract 2021 (2008).

    Google Scholar 

  54. Friedman, H. S. et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. doi:10.1200/JCO.2008.19.8721.

    CAS  PubMed  Google Scholar 

  55. FDA Briefing Document Oncology Drug Advisory Committee Meeting, March 31, 2009 [online] (2009).

  56. Desjardins, A. et al. Bevacizumab plus irinotecan in recurrent WHO grade 3 malignant gliomas. Clin. Cancer Res. 14, 7068–7073 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Taillibert, S. et al. Bevacizumab and irinotecan for recurrent oligodendroglial tumors. Neurology 72, 1601–1606 (2009).

    CAS  PubMed  Google Scholar 

  58. Duda, D. G., Jain, R. K. & Willett, C. G. Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J. Clin. Oncol. 25, 4033–4042 (2007).

    CAS  PubMed  Google Scholar 

  59. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wachsberger, P. R. et al. VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 67, 1526–1537 (2007).

    CAS  PubMed  Google Scholar 

  61. Zhang, F. et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc. Natl Acad. Sci. USA 106, 6152–6157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal. 2, re1 (2009).

  63. De Groot, J. F. et al. Phase II single arm trial of aflibercept in patients with recurrent temozolomide-resistant glioblastoma: NABTC 0601. J. Clin. Oncol. 26 (May 20 Suppl.), abstract 2020 (2008).

  64. Zhou, Q., Guo, P. & Gallo, J. M. Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin. Cancer Res. 14, 1540–1549 (2008).

    PubMed  Google Scholar 

  65. De Groot, J. et al. A phase II study of XL184 in patients (pts) with progressive glioblastoma multiforme (GBM) in first or second relapse. J. Clin. Oncol. 27 (Suppl.), abstract 2047 (2009).

  66. Sathornsumetee, S. et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol. 26, 271–278 (2008).

    CAS  PubMed  Google Scholar 

  67. Sorensen, A. G. et al. A “vascular normalization” index as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 69, 5296–5300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, W. et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol. 25, 4714–4721 (2007).

    CAS  PubMed  Google Scholar 

  69. Chen, W. et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J. Nucl. Med. 46, 945–952 (2005).

    CAS  PubMed  Google Scholar 

  70. Pope, W. B. et al. Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252, 182–189 (2009).

    PubMed  Google Scholar 

  71. Guo, P. et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am. J. Pathol. 162, 1083–1093 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Desjardins, A. et al. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J. Neurooncol. 83, 53–60 (2007).

    CAS  PubMed  Google Scholar 

  73. Wen, P. Y. et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin. Cancer Res. 12, 4899–4907 (2006).

    CAS  PubMed  Google Scholar 

  74. Bergers, G. & Benjamin, L. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003).

    CAS  PubMed  Google Scholar 

  75. Martens, T. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 12, 6144–6152 (2006).

    CAS  PubMed  Google Scholar 

  76. Li, X. et al. Thalidomide down-regulates the expression of VEGF and bFGF in cisplatin-resistant human lung carcinoma cells. Anticancer Res. 23, 2481–2487 (2003).

    CAS  PubMed  Google Scholar 

  77. D'Amato, R., Loughnan, M., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA 91, 4082–4085 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fine, H. et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J. Clin. Oncol. 18, 708–715 (2000).

    CAS  PubMed  Google Scholar 

  79. Marx, G. et al. Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J. Neurooncol. 54, 31–38 (2001).

    CAS  PubMed  Google Scholar 

  80. Fine, H. et al. Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J. Clin. Oncol. 21, 2299–2304 (2003).

    CAS  PubMed  Google Scholar 

  81. Chang, S. et al. Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 60, 353–357 (2004).

    CAS  PubMed  Google Scholar 

  82. Kesari, S. et al. Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro Oncol. 10, 300–308 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fine, H. A. et al. A phase I trial of lenalidomide in patients with recurrent primary central nervous system tumors. Clin. Cancer Res. 13, 7101–7106 (2007).

    CAS  PubMed  Google Scholar 

  84. Drappatz, J., Norden, A. D. & Wen, P. Y. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev. Neurother. 9, 519–534 (2009).

    PubMed  Google Scholar 

  85. Brem, S. et al. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro Oncol. 7, 246–253 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mikkelsen, T. et al. Phase II clinical and pharmacologic study of radiation therapy and carboxyamido-triazole (CAI) in adults with newly diagnosed glioblastoma multiforme. Invest. New Drugs 25, 259–263 (2007).

    CAS  PubMed  Google Scholar 

  87. Browder, T. et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  PubMed  Google Scholar 

  88. Samuel, D. P., Wen, P. Y. & Kieran, M. W. Antiangiogenic (metronomic) chemotherapy for brain tumors: current and future perspectives. Expert Opin. Investig. Drugs 18, 973–983 (2009).

    CAS  PubMed  Google Scholar 

  89. Kesari, S. et al. Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro Oncol. 9, 354–363 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kieran, M. W. et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J. Pediatr. Hematol. Oncol. 27, 573–581 (2005).

    PubMed  Google Scholar 

  91. Fine, H. A. et al. Enzastaurin (ENZ) versus lomustine (CCNU) in the treatment of recurrent, intracranial glioblastoma multiforme (GBM): a phase III study. J. Clin. Oncol. 26 (May 20 Suppl.), abstract 2005 (2008).

    Google Scholar 

  92. Reardon, D. et al. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer 103, 329–338 (2005).

    CAS  PubMed  Google Scholar 

  93. Nabors, L. B. et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J. Clin. Oncol. 25, 1651–1657 (2007).

    CAS  PubMed  Google Scholar 

  94. Reardon, D. A. et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol. 26, 5610–5617 (2008).

    CAS  PubMed  Google Scholar 

  95. Stupp, R. et al. Mature results of a phase I/IIa trial of the integrin inhibitor cilengitide (EMD121974) added to standard concomitant and adjuvant temozolomide and radiotherapy for newly diagnosed glioblastoma [abstract MA-10]. Society for Neuro-Oncology 12th Annual Scientific Meeting, Dallas, TX, USA (2007).

  96. Avraamides, C. J., Garmy-Susini, B. & Varner, J. A. Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 8, 604–617 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Horowitz, J. R. et al. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler. Thromb. Vasc. Biol. 17, 2793–2800 (1997).

    CAS  PubMed  Google Scholar 

  98. Hood, J. D., Meininger, C. J., Ziche, M. & Granger, H. J. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am. J. Physiol. 274, H1054–H1058 (1998).

    CAS  PubMed  Google Scholar 

  99. Fukumura, D. et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl Acad. Sci. USA 98, 2604–2609 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Drappatz, J., Schiff, D., Kesari, S., Norden, A. D. & Wen, P. Y. Medical management of brain tumor patients. Neurol. Clin. 25, 1035–1071 (2007).

    PubMed  Google Scholar 

  102. Norden, A. D. et al. Colon perforation during antiangiogenic therapy for malignant glioma. Neuro Oncol. 11, 92–95 (2009).

    PubMed  PubMed Central  Google Scholar 

  103. Vaughn, C., Zhang, L. & Schiff, D. Reversible posterior leukoencephalopathy syndrome in cancer. Curr. Oncol. Rep. 10, 86–91 (2008).

    PubMed  Google Scholar 

  104. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    CAS  PubMed  Google Scholar 

  105. Dietrich, J., Han, R., Yang, Y., Mayer-Proschel, M. & Noble, M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J. Biol. 5, 22 (2006).

    PubMed  PubMed Central  Google Scholar 

  106. Kunkel, P. et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. 61, 6624–6628 (2001).

    CAS  PubMed  Google Scholar 

  107. Lamszus, K., Kunkel, P. & Westphal, M. Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir. Suppl. 88, 169–177 (2003).

    CAS  PubMed  Google Scholar 

  108. Rubenstein, J. L. et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2, 306–314 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lucio-Eterovic, A. K., Piao, Y. & de Groot, J. F. Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin. Cancer Res. 15, 4589–4599 (2009).

    CAS  PubMed  Google Scholar 

  110. Chi, A. S., Norden, A. D. & Wen, P. Y. Antiangiogenic strategies for treatment of malignant gliomas. Neurotherapeutics 6, 513–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fischer, I. et al. High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro Oncol. 10, 700–708 (2008).

    PubMed  PubMed Central  Google Scholar 

  113. Iwamoto, F. M. et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology (in press).

  114. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Erber, R. et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 18, 338–340 (2004).

    CAS  PubMed  Google Scholar 

  116. Zagzag, D. et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab. Invest. 86, 1221–1232 (2006).

    CAS  PubMed  Google Scholar 

  117. Rubin, J. B. et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA 100, 13513–13518 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Macdonald, D. R., Cascino, T. L., Schold, S. C. Jr, & Cairncross, J. G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 8, 1277–1280 (1990).

    CAS  PubMed  Google Scholar 

  119. Norden, A. D. et al. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J. Neurooncol. 92, 149–155 (2009).

    CAS  PubMed  Google Scholar 

  120. Kamoun, W. S. et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J. Clin. Oncol. 27, 2542–2552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. van den Bent, M. J. et al. End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald's criteria. J. Clin. Oncol. 27, 2905–2908 (2009).

    PubMed  PubMed Central  Google Scholar 

  122. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Quant, E. C. et al. Role of a second chemotherapy in recurrent malignant glioma patients who progress on bevacizumab. Neuro Oncol. doi:10.1215/15228517-2009-006.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chang, S. M., Clarke, J. & Wen, P. Y. Novel imaging response assessment for drug therapies in recurrent malignant glioma. In American Society of Clinical Oncology 2009 Educational Book, 107–111 (American Society of Clinical Oncology, Alexandria, 2009).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Cairns-Haley and James Canary Brain Tumor Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Y. Wen.

Ethics declarations

Competing interests

A. D. Norden has acted as a consultant for Genentech and has received honoraria from Schering-Plough. P. Y. Wen has received research support from Amgen, AstraZeneca, Boehringer Ingelheim, Exelixis, Genentech, Novartis and Schering-Plough. J. Drappetz declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norden, A., Drappatz, J. & Wen, P. Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 5, 610–620 (2009). https://doi.org/10.1038/nrneurol.2009.159

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing