Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis

Key Points

  • Progressive synaptic loss and dysfunction—also known as synaptopathy—occur early in multiple sclerosis (MS), and in experimental autoimmune encephalomyelitis (EAE), which is used to study MS in rodent models

  • Along with demyelination and axonal damage or transection, synaptopathy is a pathophysiological hallmark observed in MS and EAE; moreover, it is independent of axonal transection and demyelination

  • Synaptopathy has long-lasting effects that can be detrimental for motor and cognitive functions

  • In MS and EAE, neuroinflammation alters the balance between the GABAergic and glutamatergic systems in the brain and spinal cord

  • Proinflammatory cytokines released during acute MS attacks increase glutamate-mediated synaptic transmission and reduce γ-aminobutyric acid-mediated synaptic signalling, resulting in unbalanced synaptic hyperexcitation and possibly also to neurodegeneration

  • Targeting of mechanisms that stabilize, protect, repair or help regenerate synapses would enable clinical intervention at both early and late stages of the disease

Abstract

Multiple sclerosis (MS) has long been regarded as a chronic inflammatory disease of the white matter that leads to demyelination and eventually to neurodegeneration. In the past decade, several aspects of MS pathogenesis have been challenged, and degenerative changes of the grey matter, which are independent of demyelination, have become a topic of interest. CNS inflammation in MS and experimental autoimmune encephalomyelitis (EAE; a disease model used to study MS in rodents) causes a marked imbalance between GABAergic and glutamatergic transmission, and a loss of synapses, all of which leads to a diffuse 'synaptopathy'. Altered synaptic transmission can occur early in MS and EAE, independently of demyelination and axonal loss, and subsequently causes excitotoxic damage. Inflammation-driven synaptic abnormalities are emerging as a prominent pathogenic mechanism in MS—importantly, they are potentially reversible and, therefore, represent attractive therapeutic targets. In this Review, we focus on the connection between inflammation and synaptopathy in MS and EAE, which sheds light not only on the pathophysiology of MS but also on that of primary neurodegenerative disorders in which inflammatory processes contribute to disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammatory synaptopathy in MS and EAE.
Figure 2: Demyelination, axonal loss and synaptopathy characterize multiple sclerosis and experimental autoimmune encephalomyelitis pathophysiology.
Figure 3: Cascades leading to inflammation-induced excitotoxicity.

Similar content being viewed by others

References

  1. Peterson, J. W., Bö, L., Mörk, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Ciccarelli, O. et al. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol. 13, 807–822 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Geurts, J. J. G., Calabrese, M., Fisher, E. & Rudick, R. A. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 11, 1082–1092 (2012).

    Article  PubMed  Google Scholar 

  5. Bø, L., Vedeler, C. A., Nyland, H. I., Trapp, B. D. & Mørk, S. J. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732 (2003).

    Article  PubMed  Google Scholar 

  6. Kutzelnigg, A. et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 17, 38–44 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peterson, J. W., Bö, L., Mörk, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Wegner, C., Esiri, M. M., Chance, S. A., Palace, J. & Matthews, P. M. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67, 960–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kooi, E.-J. et al. Cholinergic imbalance in the multiple sclerosis hippocampus. Acta Neuropathol. 122, 313–322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Stefano, N. et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60, 1157–1162 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Audoin, B. et al. Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 690–695 (2010).

    Article  PubMed  Google Scholar 

  12. Calabrese, M. et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150 (2009).

    Article  PubMed  Google Scholar 

  13. Tedeschi, G. et al. Brain atrophy and lesion load in a large population of patients with multiple sclerosis. Neurology 65, 280–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Sanfilipo, M. P., Benedict, R. H., Sharma, J., Weinstock-Guttman, B. & Bakshi, R. The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Neuroimage 26, 1068–1077 (2005).

    Article  PubMed  Google Scholar 

  15. Roosendaal, S. D. et al. Grey matter volume in a large cohort of MS patients: relation to MRI parameters and disability. Mult. Scler. 17, 1098–1106 (2011).

    Article  PubMed  Google Scholar 

  16. Dutta, R. et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann. Neurol. 69, 445–454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calabrese, M. et al. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci. 16, 147–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Mix, E., Meyer-Rienecker, H., Hartung, H. P. & Zettl, U. K. Animal models of multiple sclerosis—potentials and limitations. Prog. Neurobiol. 92, 386–404 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Friese, M. A., Schattling, B. & Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 10, 225–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Ellwardt, E. & Zipp, F. Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp. Neurol. 262, 8–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Michailidou, I. et al. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol. 77, 1007–1026 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Vercellino, M. et al. Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J. Neuropathol. Exp. Neurol. 66, 723–729 (2007).

    Article  Google Scholar 

  23. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tambalo, S. et al. Functional magnetic resonance imaging of rats with experimental autoimmune encephalomyelitis reveals brain cortex remodeling. J. Neurosci. 35, 10088–10100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, B., Luo, L., Moore, G. R., Paty, D. W. & Cynader, M. S. Dendritic and synaptic pathology in experimental autoimmune encephalomyelitis. Am. J. Pathol. 162, 1639–1650 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marques, K. B., Santos, L. M. & Oliveira, A. L. Spinal motoneuron synaptic plasticity during the course of an animal model of multiple sclerosis. Eur. J. Neurosci. 24, 3053–3062 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Freria, C. M., Zanon, R. G., Santos, L. M. & Oliveira, A. L. Major histocompatibility complex class I expression and glial reaction influence spinal motoneuron synaptic plasticity during the course of experimental autoimmune encephalomyelitis. J. Comp. Neurol. 518, 990–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Kerschensteiner, M. et al. Remodeling of axonal connections contributes to recovery in an animal model of multiple sclerosis. J. Exp. Med. 200, 1027–1038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Centonze, D. et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. 29, 3442–3452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ziehn, M. O., Avedisian, A. A., Tiwari-Woodruff, S. & Voskuhl, R. R. Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab. Invest. 90, 774–786 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ziehn, M. O. et al. Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease. J. Neurosci. 32, 12312–12324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mori, F. et al. Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis. Neuromolecular Med. 16, 38–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Mandolesi, G. et al. GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. Neurobiol. Dis. 46, 414–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Rossi, S. et al. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain Behav. Immun. 25, 947–956 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Falco, A., Pennucci, R., Brambilla, E. & De Curtis, I. Reduction in parvalbumin-positive interneurons and inhibitory input in the cortex of mice with experimental autoimmune encephalomyelitis. Exp. Brain Res. 232, 2439–2449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mandolesi, G. et al. Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J. Neurosci. 33, 12105–12121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nisticò, R. et al. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS ONE 8, e54666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clements, R. J., McDonough, J. & Freeman, E. J. Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Exp. Brain Res. 187, 459–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Freeman, L. et al. The neuronal component of gray matter damage in multiple sclerosis: a [11C]flumazenil positron emission tomography study. Ann. Neurol. 78, 554–567 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Nicholas, R., Magliozzi, R., Campbell, G., Mahad, D. & Reynolds, R. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis. Mult. Scler. http://dx.doi.org/10.1177/1352458515579445.

  41. Pitt, D., Werner, P. & Raine, C. S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med. 6, 67–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Stojanovic, I. R., Kostic, M. & Ljubisavljevic, S. The role of glutamate and its receptors in multiple sclerosis. J. Neural Transm. 121, 945–955 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Centonze, D. et al. The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ. 17, 1083–1091 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Azevedo, C. J. et al. In vivo evidence of glutamate toxicity in multiple sclerosis. Ann. Neurol. 76, 269–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bolton, C. & Paul, C. Glutamate receptors in neuroinflammatory demyelinating disease. Mediators Inflamm. 2006, 93684 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mehta, A., Prabhakar, M., Kumar, P., Deshmukh, R. & Sharma, P. L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 698, 6–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. MacMillan, E. L. et al. Progressive multiple sclerosis exhibits decreasing glutamate and glutamine over two years. Mult. Scler. http://dx.doi.org/10.1177/1352458515586086.

  48. Muhlert, N. et al. Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions. J. Neurol. Neurosurg. Psychiatry 85, 834–840 (2014).

    Article  Google Scholar 

  49. Qureshi, G. A. & Baig, M. S. Quantitation of free amino acids in biological samples by high-performance liquid chromatography. Application of the method in evaluating amino acid levels in cerebrospinal fluid and plasma of patients with multiple sclerosis. J. Chromatogr. 459, 237–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Honegger, C. G., Krenger, W. & Langemann, H. Changes in amino acid contents in the spinal cord and brainstem of rats with experimental autoimmune encephalomyelitis. J. Neurochem. 53, 423–427 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Musgrave, T. et al. The MAO inhibitor phenelzine improves functional outcomes in mice with experimental autoimmune encephalomyelitis (EAE). Brain Behav. Immun. 25, 1677–1688 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Kan, Q.-C., Zhang, S., Xu, Y.-M., Zhang, G.-X. & Zhu, L. Matrine regulates glutamate-related excitotoxic factors in experimental autoimmune encephalomyelitis. Neurosci. Lett. 560, 92–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Castegna, A. et al. Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis. Neuroscience 185, 97–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Werner, P., Pitt, D. & Raine, C. S. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyre and axonal damage. Ann. Neurol. 50, 169–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Stover, J. F. et al. Neurotransmitters in cerebrospinal fluid reflect pathological activity. Eur. J. Clin. Invest. 27, 1038–1043 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Sarchielli, P., Greco, L., Floridi, A., Floridi, A. & Gallai, V. Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch. Neurol. 60, 1082–1088 (2003).

    Article  PubMed  Google Scholar 

  57. Srinivasan, R., Sailasuta, N., Hurd, R., Nelson, S. & Pelletier, D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128, 1016–1025 (2005).

    Article  PubMed  Google Scholar 

  58. Vrenken, H. et al. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn. Reson. Med. 53, 256–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Baranzini, S. E. et al. Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. Brain 133, 2603–2611 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ganor, Y. & Levite, M. The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells. J. Neural Transm. 121, 983–1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Hardin-Pouzet, H. et al. Glutamate metabolism is down-regulated in astrocytes during experimental allergic encephalomyelitis. Glia 20, 79–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Olechowski, C. J. et al. A diminished response to formalin stimulation reveals a role for the glutamate transporters in the altered pain sensitivity of mice with experimental autoimmune encephalomyelitis (EAE). Pain 149, 565–572 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Ohgoh, M. Altered expression of glutamate transporters in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 125, 170–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Mitosek-Szewczyk, K., Sulkowski, G., Stelmasiak, Z. & Struz˙yn´ska, L. Expression of glutamate transporters GLT-1 and GLAST in different regions of rat brain during the course of experimental autoimmune encephalomyelitis. Neuroscience 155, 45–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Vallejo-Illarramendi, A., Domercq, M., Pérez-Cerdá, F., Ravid, R. & Matute, C. Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol. Dis. 21, 154–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Lieury, A. et al. Tissue remodeling in periplaque regions of multiple sclerosis spinal cord lesions. Glia 62, 1645–1658 (2014).

    Article  PubMed  Google Scholar 

  67. Newcombe, J. et al. Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol. 18, 52–61 (2008).

    Article  PubMed  Google Scholar 

  68. Marte, A. et al. Alterations of glutamate release in the spinal cord of mice with experimental autoimmune encephalomyelitis. J. Neurochem. 115, 343–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Geurts, J. J. G. et al. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126, 1755–1766 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Fazio, F. et al. Switch in the expression of mGlu1 and mGlu5 metabotropic glutamate receptors in the cerebellum of mice developing experimental autoimmune encephalomyelitis and in autoptic cerebellar samples from patients with multiple sclerosis. Neuropharmacology 55, 491–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Han, M. H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Zhai, D. et al. Blocking GluR2-GAPDH ameliorates experimental autoimmune encephalomyelitis. Ann. Clin. Transl. Neurol. 2, 388–400 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wheeler, E., Bolton, C., Mullins, J. & Paul, C. Identification of the NMDA receptor subtype involved in the development of disease during experimental autoimmune encephalomyelitis. pA2 [online], (2003).

    Google Scholar 

  74. Sulkowski, G., Dąbrowska-Bouta, B., Chalimoniuk, M. & Strużyńska, L. Effects of antagonists of glutamate receptors on pro-inflammatory cytokines in the brain cortex of rats subjected to experimental autoimmune encephalomyelitis. J. Neuroimmunol. 261, 67–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Groom, A. J., Smith, T. & Turski, L. Multiple sclerosis and glutamate. Ann. N. Y. Acad. Sci. 993, 229–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Starck, M., Albrecht, H., Pöllmann, W., Straube, A. & Dieterich, M. Drug therapy for acquired pendular nystagmus in multiple sclerosis. J. Neurol. 244, 9–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Plaut, G. S. Effectiveness of amantadine in reducing relapses in multiple sclerosis. J. R. Soc. Med. 80, 91–93 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gilgun-Sherki, Y., Panet, H., Melamed, E. & Offen, D. Riluzole suppresses experimental autoimmune encephalomyelitis: Implications for the treatment of multiple sclerosis. Brain Res. 989, 196–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Shijie, J. et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice. Tohoku J. Exp. Med. 217, 87–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Killestein, J., Kalkers, N. F. & Polman, C. H. Glutamate inhibition in MS: the neuroprotective properties of riluzole. J. Neurol. Sci. 233, 113–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Manyam, N. V., Katz, L., Hare, T. A., Gerber, J. C. & Grossman, M. H. Levels of gamma-aminobutyric acid in cerebrospinal fluid in various neurologic disorders. Arch. Neurol. 37, 352–355 (1980).

    Article  CAS  PubMed  Google Scholar 

  82. Gottesfeld, Z., Teitelbaum, D., Webb, C. & Arnon, R. Changes in the GABA system in experimental allergic encephalomyelitis-induced paralysis. J. Neurochem. 27, 695–699 (1976).

    Article  CAS  PubMed  Google Scholar 

  83. Achar, V. S., Welch, K. M., Chabi, E., Bartosh, K. & Meyer, J. S. Cerebrospinal fluid gamma-aminobutyric acid in neurologic disease. Neurology 26, 777–780 (1976).

    Article  CAS  PubMed  Google Scholar 

  84. Zepeda, A. T., Ortiz Nesme, F. J., Méndez-Franco, J., Otero-Siliceo, E. & Pérez de la Mora, M. Free-GABA levels in the cerebrospinal fluid of patients suffering from several neurological diseases Its potential use for the diagnosis of diseases which course with inflammation and tissular necrosis. Amino Acids 9, 207–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Demakova, E. V., Korobov, V. P. & Lemkina, L. M. Determination of gamma-aminobutyric acid concentration and activity of glutamate decarboxylase in blood serum of patients with multiple sclerosis [Russian]. Klin. Lab. Diagn. 4, 15–17 (2003).

    Google Scholar 

  86. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Massella, A. et al. Gender effect on neurodegeneration and myelin markers in an animal model for multiple sclerosis. BMC Neuroscience 13, 12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vanheel, A. et al. Identification of protein networks involved in the disease course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. PLoS ONE 7, e35544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, Y. et al. γ-Aminobutyric acid transporter 1 negatively regulates T cell-mediated immune responses and ameliorates autoimmune inflammation in the CNS. J. Immunol. 181, 8226–8236 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Paul, A. M. et al. GABA transport and neuroinflammation are coupled in multiple sclerosis: Regulation of the GABA transporter-2 by ganaxolone. Neuroscience 273, 24–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Tajouri, L. et al. Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. Brain Res. Mol. Brain Res. 119, 170–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Bhat, R. et al. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl Acad. Sci. USA 107, 2580–2585 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jin, Z., Mendu, S. K. & Birnir, B. GABA is an effective immunomodulatory molecule. Amino Acids 45, 87–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Carmans, S. et al. Systemic treatment with the inhibitory neurotransmitter gamma-aminobutyric acid aggravates experimental autoimmune encephalomyelitis by affecting proinflammatory immune responses. J. Neuroimmunol. 255, 45–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Gilani, A. A., Dash, R. P., Jivrajani, M. N., Thakur, S. K. & Nivsarkar, M. Evaluation of GABAergic transmission modulation as a novel functional target for management of multiple sclerosis: Exploring inhibitory effect of GABA on glutamate-mediated excitotoxicity. Adv. Pharmacol. Sci. 2014, 632376 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Bibolini, M. J. et al. Inhibitory role of diazepam on autoimmune inflammation in rats with experimental autoimmune encephalomyelitis. Neuroscience 199, 421–428 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Rode, G., Maupas, E., Luaute, J., Courtois-Jacquin, S. & Boisson, D. Medical treatment of spasticity [French]. Neurochirurgie 49, 247–255 (2003).

    CAS  PubMed  Google Scholar 

  98. Starck, M., Albrecht, H., Pöllmann, W., Dieterich, M. & Straube, A. Acquired pendular nystagmus in multiple sclerosis: an examiner-blind cross-over treatment study of memantine and gabapentin. J. Neurol. 257, 322–327 (2010).

    Article  PubMed  Google Scholar 

  99. Bandini, F., Castello, E., Mazzella, L., Mancardi, G. L. & Solaro, C. Gabapentin but not vigabatrin is effective in the treatment of acquired nystagmus in multiple sclerosis: how valid is the GABAergic hypothesis? J. Neurol. Neurosurg. Psychiatry 71, 107–110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cutter, N. C., Scott, D. D., Johnson, J. C. & Whiteneck, G. Gabapentin effect on spasticity in multiple sclerosis: a placebo-controlled, randomized trial. Arch. Phys. Med. Rehabil. 81, 164–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Grasselli, G. et al. Abnormal NMDA receptor function exacerbates experimental autoimmune encephalomyelitis. Br. J. Pharmacol. 168, 502–517 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Mallucci, G., Peruzzotti-Jametti, L., Bernstock, J. D. & Pluchino, S. The role of immune cells, glia and neurons in white and grey matter pathology in multiple sclerosis. Prog. Neurobiol. 127–128, 1–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Wrona, D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 172, 38–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Verderio, C. et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann. Neurol. 72, 610–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Kettenmann, H., Kirchhoff, F. & Verkhratsky, A. Microglia: new roles for the synaptic stripper. Neuron 77, 10–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Vitkovic, L., Bockaert, J. & Jacque, C. “Inflammatory” cytokines: neuromodulators in normal brain? J. Neurochem. 74, 457–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Bauer, S., Kerr, B. J. & Patterson, P. H. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat. Rev. Neurosci. 8, 221–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Schäfers, M. & Sorkin, L. Effect of cytokines on neuronal excitability. Neurosci. Lett. 437, 188–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Steinman, L. Inflammatory cytokines at the summits of pathological signal cascades in brain diseases. Sci. Signal. 6, pe3 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Rossi, S. et al. Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann. Neurol. 71, 76–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Rossi, S. et al. Abnormal activity of the Na/Ca exchanger enhances glutamate transmission in experimental autoimmune encephalomyelitis. Brain Behav. Immun. 24, 1379–1385 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Haji, N. et al. TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp. Neurol. 237, 296–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Weiss, S., Mori, F., Rossi, S. & Centonze, D. Disability in multiple sclerosis: when synaptic long-term potentiation fails. Neurosci. Biobehav. Rev. 43, 88–99 (2014).

    Article  PubMed  Google Scholar 

  114. Ziehn, M. O., Avedisian, A. A., Dervin, S. M., O'Dell, T. J. & Voskuhl, R. R. Estriol preserves synaptic transmission in the hippocampus during autoimmune demyelinating disease. Lab. Invest. 92, 1234–1245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Musumeci, G. et al. Transient receptor potential vanilloid 1 channels modulate the synaptic effects of TNF-α and of IL-1β in experimental autoimmune encephalomyelitis. Neurobiol. Dis. 43, 669–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Rossini, P. M. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 91, 79–92 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Conte, A. et al. Intracortical excitability in patients with relapsing-remitting and secondary progressive multiple sclerosis. J. Neurol. 256, 933–938 (2009).

    Article  CAS  Google Scholar 

  118. Vucic, S. et al. Cortical dysfunction underlies disability in multiple sclerosis. Mult. Scler. 18, 425–432 (2012).

    Article  PubMed  Google Scholar 

  119. Schmierer, K., Irlbacher, K., Grosse, P., Röricht, S. & Meyer, B.-U. Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation. Neurology 59, 1218–1224 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Codecà, C. et al. Differential patterns of interhemispheric functional disconnection in mild and advanced multiple sclerosis. Mult. Scler. 16, 1308–1316 (2010).

    Article  PubMed  Google Scholar 

  121. Mori, F. et al. Short interval intracortical facilitation correlates with the degree of disability in multiple sclerosis. Brain Stimul. 6, 67–71 (2013).

    Article  PubMed  Google Scholar 

  122. Caramia, M. D. et al. 'Excitability changes of muscular responses to magnetic brain stimulation in patients with central motor disorders. Electroencephalogr. Clin. Neurophysiol. 81, 243–250 (1991).

    Article  CAS  PubMed  Google Scholar 

  123. Schwenkreis, P. et al. Influence of the N-methyl-D-aspartate antagonist memantine on human motor cortex excitability. Neurosci. Lett. 270, 137–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Ziemann, U., Lönnecker, S., Steinhoff, B. J. & Paulus, W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann. Neurol. 40, 367–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Rossi, S. et al. Inflammation inhibits GABA transmission in multiple sclerosis. Mult. Scler. 18, 1633–1635 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Rossi, S. et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult. Scler. 20, 304–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Morgen, K. et al. Training-dependent plasticity in patients with multiple sclerosis. Brain 127, 2506–2517 (2004).

    Article  PubMed  Google Scholar 

  128. Vosoughi, R. & Freedman, M. S. Therapy of MS. Clin. Neurol. Neurosurg. 112, 365–385 (2010).

    Article  PubMed  Google Scholar 

  129. Ransohoff, R. M., Hafler, D. A. & Lucchinetti, C. F. Multiple sclerosis—a quiet revolution. Nat. Rev. Neurol. 11, 134–142 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Franklin, R. J., ffrench-Constant, C., Edgar, J. M. & Smith, K. J. Neuroprotection and repair in multiple sclerosis. Nat. Rev. Neurol. 8, 624–634 (2012).

    Article  PubMed  Google Scholar 

  131. Arnold, D. L. et al. Effects of delayed-release dimethyl fumarate on MRI measures in the Phase 3 DEFINE study. J. Neurol. 261, 1794–1802 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Filippi, M. et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J. Neurol. Neurosurg. Psychiatry 85, 851–858 (2014).

    Article  PubMed  Google Scholar 

  133. Cohen, J. a. et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2015-310597.

  134. Ontaneda, D., Fox, R. J. & Chataway, J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 14, 208–223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Rossi, S. et al. Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. Br. J. Pharmacol. 165, 861–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ruffini, F. et al. Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis. Mult. Scler. 19, 1084–1094 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Parodi, B. et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol. 130, 279–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Moore, S. et al. Therapeutic laquinimod treatment decreases inflammation, initiates axon remyelination, and improves motor deficit in a mouse model of multiple sclerosis. Brain Behav. 3, 664–682 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Brück, W. & Wegner, C. Insight into the mechanism of laquinimod action. J. Neurol. Sci. 306, 173–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Mishra, M. K. et al. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann. Clin. Transl. Neurol. 1, 409–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wilms, H. et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J. Neuroinflammation 7, 30 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Noda, H., Takeuchi, H., Mizuno, T. & Suzumura, A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J. Neuroimmunol. 256, 13–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Di Menna, L. et al. Fingolimod protects cultured cortical neurons against excitotoxic death. Pharmacol. Res. 67, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Landi, D. et al. Oral fingolimod reduces glutamate-mediated intracortical excitability in relapsing-remitting multiple sclerosis. Clin. Neurophysiol. 126, 165–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lovera, J. F. et al. Memantine for cognitive impairment in multiple sclerosis: a randomized placebo-controlled trial. Mult. Scler. 16, 715–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Smith, T., Groom, A., Zhu, B. & Turski, L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat. Med. 6, 62–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Bolton, C. & Paul, C. MK-801 limits neurovascular dysfunction during experimental allergic encephalomyelitis. J. Pharmacol. Exp. Ther. 282, 397–402 (1997).

    CAS  PubMed  Google Scholar 

  149. Paul, C. & Bolton, C. Modulation of blood-brain barrier dysfunction and neurological deficits during acute experimental allergic encephalomyelitis by the N-methyl-D-aspartate receptor antagonist memantine. J. Pharmacol. Exp. Ther. 302, 50–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Wallström, E. et al. Memantine abrogates neurological deficits, but not CNS inflammation, in Lewis rat experimental autoimmune encephalomyelitis. J. Neurol. Sci. 137, 89–96 (1996).

    Article  PubMed  Google Scholar 

  151. Sulkowski, G., Dąbrowska-Bouta, B., Salińska, E. & Strużyńska, L. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain. PLoS ONE 9, e113954 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sulkowski, G., Dąbrowska-Bouta, B., & Strużyńska, L. Modulation of neurological deficits and expression of glutamate receptors during experimental autoimmune encephalomyelitis after treatment with selected antagonists of glutamate receptors. Biomed. Res. Int. 2013, 186068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kanwar, J. R., Kanwar, R. K. & Krissansen, G. W. Simultaneous neuroprotection and blockade of inflammation reverses autoimmune encephalomyelitis. Brain 127, 1313–1331 (2004).

    Article  PubMed  Google Scholar 

  154. Kanwar, J. R. Anti-inflammatory immunotherapy for multiple sclerosis/experimental autoimmune encephalomyelitis (EAE) disease. Curr. Med. Chem. 12, 2947–2962 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Besong, G. et al. Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures. J. Neurosci. 22, 5403–5411 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Solaro, C., Uccelli, M. M., Guglieri, P., Uccelli, A. & Mancardi, G. L. Gabapentin is effective in treating nocturnal painful spasms in multiple sclerosis. Mult. Scler. 6, 192–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Ørsnes, G., Crone, C., Krarup, C., Petersen, N. & Nielsen, J. The effect of baclofen on the transmission in spinal pathways in spastic multiple sclerosis patients. Clin. Neurophysiol. 111, 1372–1379 (2000).

    Article  PubMed  Google Scholar 

  158. Nielsen, J. F., Anderson, J. B. & Sinkjaer, T. Baclofen increases the soleus stretch reflex threshold in the early swing phase during walking in spastic multiple sclerosis patients. Mult. Scler. 6, 105–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Nielsen, J. F. & Sinkjær, T. Peripheral and central effect of baclofen on ankle joint stiffness in multiple sclerosis. Muscle Nerve 23, 98–105 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian National Ministero della Salute (Progetto Giovani Ricercatori) to G.M. (No. GR-2011-02347036) and A.M. (No. GR-2011-02351422) and by Fondazione Italiana Sclerosi Multipla (No. FISM 2010/S/2) to D.C.

Author information

Authors and Affiliations

Authors

Contributions

D.C., G.M., A.G., A.M., D.F., F.D.V., S.B. and H.S. researched data for the article. D.C. and G.M. wrote the article. D.C., G.M., A.G., A.M. and G.A.M. provided substantial contributions to discussion of content. All authors participated in reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Diego Centonze.

Ethics declarations

Competing interests

D.C. is an Advisory Board member for Bayer Schering, Merck-Serono and Teva, and has received honoraria for speaking or consultation fees from Almirall, Bayer Schering, Biogen Idec, Genzyme, GW Pharmaceuticals, Merck Serono, Novartis, Sanofi-Aventis and Teva. He is also the principal investigator in clinical trials for Bayer Schering, Biogen Idec, Novartis, Merck Serono, Sanofi-Aventis and Teva. The other authors declare no competing interests.

Supplementary information

Supplementary Table 1

Evidence for glutamatergic system dysfunction in MS (DOCX 34 kb)

Supplementary Table 2

Evidence for glutamatergic system dysfunction in EAE (DOCX 33 kb)

Supplementary Table 3

Evidence for GABAergic system dysfunction in MS and EAE (DOCX 29 kb)

Supplementary Table 4

Inflammation-dependent synaptic dysfunction in EAE models of MS (DOCX 61 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandolesi, G., Gentile, A., Musella, A. et al. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol 11, 711–724 (2015). https://doi.org/10.1038/nrneurol.2015.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing