Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Achievements and obstacles of remyelinating therapies in multiple sclerosis

Key Points

  • CNS remyelination serves to limit and repair the damage in demyelinating diseases such as multiple sclerosis (MS)

  • Several intrinsic molecular pathways that execute endogenous remyelination have been identified and are potential therapeutic targets

  • The first clinical proof-of-concept trials to enhance remyelination in MS have been conducted in the past few years

  • The optimal clinical and paraclinical outcome measures for the assessment of remyelination are not known, but neurophysiological measures, MRI, myelin-targeted PET radiotracers, and optical coherence tomography all are possible adjuncts to clinical outcomes in proof-of-concept studies

  • The timing of remyelination therapy is a crucial issue

  • Future MS therapy is likely to involve a combination of immunomodulatory and regenerative treatments

Abstract

Remyelination in the CNS is the natural process of damage repair in demyelinating diseases such as multiple sclerosis (MS). However, remyelination becomes inadequate in many people with MS, which results in axonal degeneration and clinical disability. Enhancement of remyelination is a logical therapeutic goal; nevertheless, all currently licensed therapies for MS are immunomodulatory and do not support remyelination directly. Several molecular pathways have been identified as potential therapeutic targets to induce remyelination, and some of these have now been assessed in proof-of-concept clinical trials. However, trial design faces several obstacles: optimal clinical or paraclinical outcome measures to assess remyelination remain ill-defined, and identification of the ideal timing of therapy is also a crucial issue. In addition, realistic expectations are needed concerning the probable benefits of such therapies. Nevertheless, approaches that enhance remyelination are likely to be protective for axons and so could prevent long-term neurodegeneration. Future MS treatment paradigms, therefore, are likely to comprise a combinatorial approach that involves both immunomodulatory and regenerative treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular factors involved in remyelination.
Figure 2: Summary of molecular factors controlling remyelination.
Figure 3: Histological features of remyelination in multiple sclerosis.
Figure 4: Dynamic myelin changes in relapsing–remitting multiple sclerosis, detected by MRI.

Similar content being viewed by others

References

  1. Hemmer, B., Kerschensteiner, M. & Korn, T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 14, 406–419 (2015).

    CAS  PubMed  Google Scholar 

  2. Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).

    CAS  PubMed  Google Scholar 

  3. Stangel, M. & Hartung, H. P. Remyelinating strategies for the treatment of multiple sclerosis. Prog. Neurobiol. 68, 361–376 (2002).

    CAS  PubMed  Google Scholar 

  4. Franklin, R. J. & ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    CAS  PubMed  Google Scholar 

  5. Gaesser, J. M. & Fyffe-Maricich, S. L. Intracellular signaling pathway regulation of myelination and remyelination in the CNS. Exp. Neurol. 283, 501–511 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kremer, D., Gottle, P., Hartung, H. P. & Kury, P. Pushing forward: remyelination as the new frontier in CNS diseases. Trends Neurosci. 39, 246–263 (2016).

    CAS  PubMed  Google Scholar 

  7. Ford, M. C. et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat. Commun. 6, 8073 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nave, K. A. & Werner, H. B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014).

    CAS  PubMed  Google Scholar 

  9. Simons, M., Misgeld, T. & Kerschensteiner, M. A unified cell biological perspective on axon-myelin injury. J. Cell Biol. 206, 335–345 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cerina, M. et al. The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain Behav. Immun. 59, 103–117 (2017).

    CAS  PubMed  Google Scholar 

  11. Prineas, J. W. & Connell, F. Remyelination in multiple sclerosis. Ann. Neurol. 5, 22–31 (1979).

    CAS  PubMed  Google Scholar 

  12. Prineas, J. W., Kwon, E. E., Cho, E. S. & Sharer, L. R. Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann. NY Acad. Sci. 436, 11–32 (1984).

    CAS  PubMed  Google Scholar 

  13. Esiri, M. M. & Morris, C. S. Immunocytochemical study of macrophages and microglial cells and extracellular matrix components in human CNS disease 2. Non-neoplastic diseases. J. Neurol. Sci. 101, 59–72 (1991).

    CAS  PubMed  Google Scholar 

  14. Stidworthy, M. F., Genoud, S., Suter, U., Mantei, N. & Franklin, R. J. Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol. 13, 329–339 (2003).

    PubMed  Google Scholar 

  15. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    PubMed  Google Scholar 

  16. Albert, M., Antel, J., Bruck, W. & Stadelmann, C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138 (2007).

    PubMed  Google Scholar 

  17. Goldschmidt, T., Antel, J., Konig, F. B., Brück, W. & Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72, 1914–1921 (2009).

    CAS  PubMed  Google Scholar 

  18. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xing, Y. L. et al. Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J. Neurosci. 34, 14128–14146 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Samanta, J. et al. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature 526, 448–452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).

    CAS  PubMed  Google Scholar 

  22. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    CAS  PubMed  Google Scholar 

  23. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, J. T., Collins, D. L., Atkins, H. L., Freedman, M. S. & Arnold, D. L. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann. Neurol. 63, 254–262 (2008).

    PubMed  Google Scholar 

  25. Brown, R. A., Narayanan, S. & Arnold, D. L. Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. Neuroimage Clin. 6, 20–25 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Powers, B. E. et al. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin. Proc. Natl Acad. Sci. USA 110, 4075–4080 (2013).

    CAS  PubMed  Google Scholar 

  27. Boyd, A., Zhang, H. & Williams, A. Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol. 125, 841–859 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998).

    CAS  PubMed  Google Scholar 

  29. Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

    PubMed  Google Scholar 

  30. Bechler, M. E., Byrne, L. & Ffrench-Constant, C. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, S., Chong, S. Y., Tuck, S. J., Corey, J. M. & Chan, J. R. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat. Protoc. 8, 771–782 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Lee, S. et al. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat. Methods 9, 917–922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wake, H. et al. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6, 7844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Gautier, H. O. et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat. Commun. 6, 8518 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Jarjour, A. A. & Kennedy, T. E. Oligodendrocyte precursors on the move: mechanisms directing migration. Neuroscientist 10, 99–105 (2004).

    PubMed  Google Scholar 

  39. Gutowski, N. J., Newcombe, J. & Cuzner, M. L. Tenascin-R and C in multiple sclerosis lesions: relevance to extracellular matrix remodelling. Neuropathol. Appl. Neurobiol. 25, 207–214 (1999).

    CAS  PubMed  Google Scholar 

  40. Sobel, R. A. & Mitchell, M. E. Fibronectin in multiple sclerosis lesions. Am. J. Pathol. 135, 161–168 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sobel, R. A., Chen, M., Maeda, A. & Hinojoza, J. R. Vitronectin and integrin vitronectin receptor localization in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 54, 202–213 (1995).

    CAS  PubMed  Google Scholar 

  42. Stoffels, J. M. et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136, 116–131 (2013).

    PubMed  Google Scholar 

  43. Tepavcevic, V. et al. Early netrin-1 expression impairs central nervous system remyelination. Ann. Neurol. 76, 252–268 (2014).

    CAS  PubMed  Google Scholar 

  44. Williams, A. et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130, 2554–2565 (2007).

    PubMed  Google Scholar 

  45. Li, H. & Richardson, W. D. Evolution of the CNS myelin gene regulatory program. Brain Res. 1641, 111–121 (2016).

    CAS  PubMed  Google Scholar 

  46. Fancy, S. P. et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 23, 1571–1585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fancy, S. P. et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat. Neurosci. 14, 1009–1016 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, J. K. et al. Retinoid X receptor γ signaling accelerates CNS remyelination. Nat. Neurosci. 14, 45–53 (2011).

    CAS  PubMed  Google Scholar 

  49. Mi, S. et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13, 1228–1233 (2007).

    CAS  PubMed  Google Scholar 

  50. Mi, S. et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8, 745–751 (2005).

    CAS  PubMed  Google Scholar 

  51. Deshmukh, V. A. et al. A regenerative approach to the treatment of multiple sclerosis. Nature 502, 327–332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Najm, F. J. et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522, 216–220 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mei, F. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20, 954–960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Baer, A. S. et al. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132, 465–481 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 (2013).

    CAS  PubMed  Google Scholar 

  57. Back, S. A. et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 11, 966–972 (2005).

    CAS  PubMed  Google Scholar 

  58. Mishra, M. K. & Yong, V. W. Myeloid cells — targets of medication in multiple sclerosis. Nat. Rev. Neurol. 12, 539–551 (2016).

    CAS  PubMed  Google Scholar 

  59. Rothhammer, V. & Quintana, F. J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol. 37, 625–638 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Correale, J. & Farez, M. F. The role of astrocytes in multiple sclerosis progression. Front. Neurol. 6, 180 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Skripuletz, T. et al. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136, 147–167 (2013).

    PubMed  Google Scholar 

  62. Skripuletz, T. et al. Pivotal role of choline metabolites in remyelination. Brain 138, 398–413 (2015).

    PubMed  Google Scholar 

  63. Miron, V. E. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J. Leukoc. Biol. 101, 1103–1108 (2017).

    CAS  PubMed  Google Scholar 

  64. Li, J. et al. Astrocytes in oligodendrocyte lineage development and white matter pathology. Front. Cell Neurosci. 10, 119 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Xiao, J. et al. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis. Int. J. Mol. Sci. 16, 9283–9302 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Salinas Tejedor, L. et al. Mesenchymal stem cells do not exert direct beneficial effects on CNS remyelination in the absence of the peripheral immune system. Brain Behav. Immun. 50, 155–165 (2015).

    CAS  PubMed  Google Scholar 

  67. Bjartmar, C., Kinkel, R. P., Kidd, G., Rudick, R. A. & Trapp, B. D. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57, 1248–1252 (2001).

    CAS  PubMed  Google Scholar 

  68. Brown, R. A., Narayanan, S., Banwell, B., Arnold, D. L. & Canadian Pediatric Demyelinating Disease Network. Magnetization transfer ratio recovery in new lesions decreases during adolescence in pediatric-onset multiple sclerosis patients. Neuroimage Clin. 6, 237–242 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Gudi, V., Gingele, S., Skripuletz, T. & Stangel, M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front. Cell Neurosci. 8, 73 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Thorpe, J. W. et al. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46, 373–378 (1996).

    CAS  PubMed  Google Scholar 

  71. Green, A. et al. Positive phase II double-blind randomized placebo-controlled crossover trial of clemastine [abstract]. American Academy of Neurology 68th Annual Meeting https://www.aan.com/PressRoom/Home/GetDigitalAsset/12049 (2016).

  72. Stangel, M., Boegner, F., Klatt, C. H., Hofmeister, C. & Seyfert, S. A placebo-controlled pilot trial to study the remyelinating potential of intravenous immunoglobulins in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 68, 89–92 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Brusa, A., Jones, S. J. & Plant, G. T. Long-term remyelination after optic neuritis: a 2-year visual evoked potential and psychophysical serial study. Brain 124, 468–479 (2001).

    CAS  PubMed  Google Scholar 

  74. Balcer, L. J. et al. Low-contrast acuity measures visual improvement in phase 3 trial of natalizumab in relapsing MS. J. Neurol. Sci. 318, 119–124 (2012).

    CAS  PubMed  Google Scholar 

  75. Waxman, S. G. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat. Rev. Neurosci. 7, 932–941 (2006).

    CAS  PubMed  Google Scholar 

  76. Sarnthein, J., Andersson, M., Zimmermann, M. B. & Zumsteg, D. High test-retest reliability of checkerboard reversal visual evoked potentials (VEP) over 8 months. Clin. Neurophysiol. 120, 1835–1840 (2009).

    PubMed  Google Scholar 

  77. Costello, F. E., Klistorner, A. & Kardon, R. Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis. Ophthalm. Surg. Lasers Imag. 42, S28–S40 (2011).

    Google Scholar 

  78. Talman, L. S. et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann. Neurol. 67, 749–760 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Mallik, S., Samson, R. S., Wheeler-Kingshott, C. A. & Miller, D. H. Imaging outcomes for trials of remyelination in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 85, 1396–1404 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Matthews, P. M. & Datta, G. Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis. Expert Opin. Drug Discov. 10, 557–570 (2015).

    CAS  PubMed  Google Scholar 

  81. Schmierer, K., Parkes, H. G. & So, P. W. Direct visualization of remyelination in multiple sclerosis using T2-weighted high-field MRI. Neurology 72, 472 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Alonso-Ortiz, E., Levesque, I. R. & Pike, G. B. MRI-based myelin water imaging: a technical review. Magn. Reson. Med. 73, 70–81 (2015).

    CAS  PubMed  Google Scholar 

  83. Laule, C. et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult. Scler. 12, 747–753 (2006).

    CAS  PubMed  Google Scholar 

  84. Vavasour, I. M. et al. Longitudinal changes in myelin water fraction in two MS patients with active disease. J. Neurol. Sci. 276, 49–53 (2009).

    CAS  PubMed  Google Scholar 

  85. Vargas, W. S. et al. Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. Neuroimage Clin. 9, 369–375 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Duval, T. et al. g-Ratio weighted imaging of the human spinal cord in vivo. Neuroimage 145, 11–23 (2017).

    CAS  PubMed  Google Scholar 

  87. Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. NeuroTherapeutics 4, 316–329 (2007).

    PubMed  PubMed Central  Google Scholar 

  88. Fox, R. J. et al. A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values. AJNR Am. J. Neuroradiol. 33, 695–700 (2012).

    CAS  PubMed  Google Scholar 

  89. Chiang, C. W. et al. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage 101, 310–319 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Fujiyoshi, K. et al. Application of q-space diffusion MRI for the visualization of white matter. J. Neurosci. 36, 2796–2808 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Giacomini, P. S. et al. Measuring demyelination and remyelination in acute multiple sclerosis lesion voxels. Arch. Neurol. 66, 375–381 (2009).

    PubMed  Google Scholar 

  92. Schmierer, K., Scaravilli, F., Altmann, D. R., Barker, G. J. & Miller, D. H. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 56, 407–415 (2004).

    PubMed  Google Scholar 

  93. Altmann, D. R. et al. Sample sizes for lesion magnetisation transfer ratio outcomes in remyelination trials for multiple sclerosis. Mult. Scler. Relat. Disord. 3, 237–243 (2014).

    CAS  PubMed  Google Scholar 

  94. Schwartzbach, C. J. et al. Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing–remitting multiple sclerosis: a randomised, single-blind, phase II study. J. Neurol. 264, 304–315 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Levesque, I. R. et al. Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn. Reson. Med. 63, 633–640 (2010).

    PubMed  Google Scholar 

  96. Veronese, M. et al. Quantification of [11C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography. J. Cereb. Blood Flow Metab. 35, 1771–1782 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Bodini, B. et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann. Neurol. 79, 726–738 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tiwari, A. D. et al. Design, synthesis, and evaluation of fluorinated radioligands for myelin imaging. J. Med. Chem. 59, 3705–3718 (2016).

    CAS  PubMed  Google Scholar 

  99. Maggi, P. et al. The formation of inflammatory demyelinated lesions in cerebral white matter. Ann. Neurol. 76, 594–608 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Datta, G. et al. 11C-PBR28 or 18F-PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis. J. Nucl. Med. 58, 1477–1482 (2017).

    CAS  PubMed  Google Scholar 

  101. van Waesberghe, J. H. et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann. Neurol. 46, 747–754 (1999).

    CAS  PubMed  Google Scholar 

  102. Huang, S. Y. et al. Characterization of axonal disease in patients with multiple sclerosis using high-gradient-diffusion MR imaging. Radiology 280, 244–251 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    CAS  PubMed  Google Scholar 

  104. Gupta, N. et al. Neural stem cell engraftment and myelination in the human brain. Sci. Transl. Med. 4, 155ra137 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. Jokubaitis, V. G. et al. Predictors of disability worsening in clinically isolated syndrome. Ann. Clin. Transl. Neurol. 2, 479–491 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Brown, R. A., Narayanan, S. & Arnold, D. L. Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. Neuroimage 66, 103–109 (2013).

    PubMed  Google Scholar 

  107. Cadavid, D. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 16, 189–199 (2017).

    CAS  PubMed  Google Scholar 

  108. Cadavid, D. et al. Efficacy analysis of opicinumab in relapsing multiple sclerosis: the Phase 2b SYNERGY trial [abstract]. ECTRIMS https://Onlinelibrary.Ectrims-Congress.eu/Ectrims/2016/32nd/147038/Diego.Cadavid.Efficacy.Analysis.of.Opicinumab.in.Relaps.Multiple.Sclerosis.Html?f=m1 (2016).

  109. Suhs, K. W. et al. A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann. Neurol. 72, 199–210 (2012).

    PubMed  Google Scholar 

  110. John, G. R. et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat. Med. 8, 1115–1121 (2002).

    CAS  PubMed  Google Scholar 

  111. Stidworthy, M. F. et al. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 127, 1928–1941 (2004).

    PubMed  Google Scholar 

  112. Zhang, Y. et al. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc. Natl Acad. Sci. USA 106, 19162–19167 (2009).

    CAS  PubMed  Google Scholar 

  113. Furusho, M., Kaga, Y., Ishii, A., Hebert, J. M. & Bansal, R. Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J. Neurosci. 31, 5055–5066 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lindner, M. et al. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain 138, 1875–1893 (2015).

    PubMed  Google Scholar 

  115. Mohan, H. et al. Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathol. Commun. 2, 168 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Mi, S. et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann. Neurol. 65, 304–315 (2009).

    CAS  PubMed  Google Scholar 

  117. Mi, S. et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat. Neurosci. 7, 221–228 (2004).

    CAS  PubMed  Google Scholar 

  118. Hu, Q. D. et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115, 163–175 (2003).

    CAS  PubMed  Google Scholar 

  119. Nakahara, J., Kanekura, K., Nawa, M., Aiso, S. & Suzuki, N. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J. Clin. Invest. 119, 169–181 (2009).

    CAS  PubMed  Google Scholar 

  120. Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Syed, Y. A. et al. Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination. Acta Neuropathol. 131, 281–298 (2016).

    CAS  PubMed  Google Scholar 

  122. Natrajan, M. S. et al. Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain 138, 3581–3597 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Mei, F. et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 5, e18246 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Charles, P. et al. Negative regulation of central nervous system myelination by polysialyated-neural cell adhesion molecule. Proc. Natl Acad. Sci. USA 97, 7585–7590 (2000).

    CAS  PubMed  Google Scholar 

  126. Charles, P. et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125, 1972–1979 (2002).

    PubMed  Google Scholar 

  127. Yuen, T. J. et al. Identification of endothelin 2 as an inflammatory factor that promotes central nervous system remyelination. Brain 136, 1035–1047 (2013).

    PubMed  PubMed Central  Google Scholar 

  128. Hammond, T. R. et al. Astrocyte-derived endothelin-1 inhibits remyelination through Notch activation. Neuron 81, 588–602 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Al Nimer, F. et al. Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurol. Neuroimmunol. Neuroinflamm. 3, e191 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Bai, L. et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat. Neurosci. 15, 862–870 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sloane, J. A. et al. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl Acad. Sci. USA 107, 11555–11560 (2010).

    CAS  PubMed  Google Scholar 

  132. Piaton, G. et al. Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 134, 1156–1167 (2011).

    PubMed  Google Scholar 

  133. Spassky, N. et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J. Neurosci. 22, 5992–6004 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Clemente, D., Ortega, M. C., Arenzana, F. J. & de Castro, F. FGF-2 and Anosmin-1 are selectively expressed in different types of multiple sclerosis lesions. J. Neurosci. 31, 14899–14909 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants to T.K. from the German Research Foundation (SFB-TR128-B7; Ku1477/6-1) and the Interdisciplinary Clinical Research Center, Münster (IZKF; KuT3/012/15). P.M.M. is in receipt of personal and research support from the Edmond J. Safra Foundation and Lily Safra, the Imperial College National Institute for Health Research (NIHR) Biomedical Research Centre, the NIHR Senior Investigator Programme, the UK Dementia Research Institute, the UK Medical Research Council, Biogen and the Engineering and Physics Science Research Council. M.S. is supported by Niedersachsen Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony.

Author information

Authors and Affiliations

Authors

Contributions

All authors performed literature searches, selected important literature to be cited, wrote various sections of the manuscript, and revised the entire manuscript.

Corresponding author

Correspondence to Martin Stangel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

G-ratio

The ratio of the inner axonal diameter to the total outer diameter, an index of relative myelin thickness

Uhthoff's phenomenon

Heat-associated worsening of neurological symptoms caused by inhibition of nerve conduction following demyelination.

Shadow plaques

Multiple sclerosis lesions in which the total lesion area is remyelinated.

Heterochronic parabiosis

Surgical joining of two animals of different ages to generate a shared circulation.

Optical coherence tomography

An optical imaging method that provides detailed information regarding the microstructure of thin layers of tissue (for example, the retina) based on backscatter of reflected light.

Diffusion-weighted MRI

An MRI method in which the contrast-reflecting tissue microstructure is determined based on intrinsic local differences in the rate or extent of diffusion of water.

b-value

A scanner parameter conveying the relative strength and timing of the diffusion-sensitising gradients for diffusion-weighted MRI; stronger diffusion effects are imaged with higher b-values.

Q-ball imaging

A form of diffusion MRI developed by Dr David Tuch of Harvard University, USA, which enables multiple white matter fibre orientations to beresolved even within a single voxel.

Magnetization transfer imaging

An imaging method based on the intrinsic contrast provided by differences in the extent of transfer of magnetisation from a macromolecular bound water pool (for example, myelin water) to the bulk water when radiofrequency energy is applied to the bound water pool.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stangel, M., Kuhlmann, T., Matthews, P. et al. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat Rev Neurol 13, 742–754 (2017). https://doi.org/10.1038/nrneurol.2017.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing